Efficient Construction of Large Search Spaces for Auto-Tuning

Floris-Jan Willemsen
f.q.willemsen@liacs.leidenuniv.nl
Leiden University
Leiden, the Netherlands
Netherlands eScience Center
Amsterdam, the Netherlands

Abstract

Automatic performance tuning, or auto-tuning, accelerates high-
performance codes by exploring vast spaces of code variants. How-
ever, due to the large number of possible combinations and complex
constraints, constructing these search spaces can be a major bottle-
neck. Real-world applications have been encountered where the
search space construction takes minutes to hours or even days.
Current state-of-the-art techniques for search space construction,
such as chain-of-trees, lack a formal foundation and only perform
adequately on a specific subset of search spaces.

We show that search space construction for constraint-based
auto-tuning can be reformulated as a Constraint Satisfaction Problem
(CSP). Building on this insight with a CSP solver, we develop a
runtime parser that translates user-defined constraint functions into
solver-optimal expressions, optimize the solver to exploit common
structures in auto-tuning constraints, and integrate these and other
advances in open-source tools. These contributions substantially
improve performance and accessibility while preserving flexibility.

We evaluate our approach using a diverse set of benchmarks,
demonstrating that our optimized solver reduces construction time
by four orders of magnitude versus brute-force enumeration, three
orders of magnitude versus an unoptimized CSP solver, and one to
two orders of magnitude versus leading auto-tuning frameworks
built on chain-of-trees. We thus eliminate a critical scalability bar-
rier for auto-tuning and provide a drop-in solution that enables
the exploration of previously unattainable problem scales in auto-
tuning and related domains.

CCS Concepts

« Computing methodologies — Discrete space search.

Keywords
Constraint solving, Auto-tuning, Search spaces, CSP, HPC

ACM Reference Format:

Floris-Jan Willemsen, Rob V. van Nieuwpoort, and Ben van Werkhoven.
2025. Efficient Construction of Large Search Spaces for Auto-Tuning. In
54th International Conference on Parallel Processing (ICPP °25), September
08-11, 2025, San Diego, CA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3754598.3754601

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPP °25, September 08—11, 2025, San Diego, CA, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2074-1/25/09

https://doi.org/10.1145/3754598.3754601

Rob V. van Nieuwpoort

r.v.van.nieuwpoort@liacs.leidenuniv.nl b.van.werkhoven@liacs.leidenuniv.nl
Leiden University

Leiden, the Netherlands

Ben van Werkhoven

Leiden University
Leiden, the Netherlands
Netherlands eScience Center
Amsterdam, the Netherlands

1 Introduction

Automatic performance tuning, or auto-tuning [5], is a commonly
applied technique in high-performance computing for optimizing
programs towards a particular hardware architecture. Auto-tuning
allows developers to automate the process of exploring the myriad
of implementation choices that arise in performance optimization,
such as the number of threads, tile sizes used in loop blocking, and
other code optimization parameters [18, 39]. Many well-known
examples of auto-tuned high-performance libraries and applica-
tions exist, such as FFTW [14] for Fast Fourier Transforms, or AT-
LAS [40] for linear algebra. At the heart of the auto-tuning method
is a search space of functionally-equivalent code variants that is
explored by an optimization algorithm. These code variants can be
generated by a compiler or using metaprogramming techniques,
such as application-specific code generators or function templates.

Together, these code variants constitute vast search spaces that
are infeasible to search by hand [25, 30, 32] and would have to
be searched over and over again as the application is executed
on different hardware or different input data sets and sizes [19,
24, 27, 38]. Construction of the auto-tuning search space, used for
enumerating and sampling different code variants, is a crucial factor
in the performance of auto-tuning as search space sizes increase,
and has therefore received a lot of attention recently [16, 28, 29, 31].

The difficulty in constructing search spaces for auto-tuning arises
from the fact that not all code variants constitute valid implementa-
tions. In fact, many code variants that could potentially be generated
violate so-called constraints. The constraints formulate dependen-
cies between different tunable parameters in the code and often
depend on limitations in both the program and the hardware. For
example, when applying loop blocking, the tile size of the outer
loop has to be a multiple of the tile size used in the inner loop, or a
padding scheme in shared memory that only applies when shared
memory is used and only for certain thread block dimensions.

In modern applications, where search spaces may contain mil-
lions or even billions of configurations, constructing the search
space can take minutes to days, making search space construction a
major bottleneck [15, 16, 35]. This is problematic when auto-tuning
for a single target, but even more prohibitive on a diverse set of
target input data and hardware, such as a BLAS library.

To this end, Rasch et al. [28] have introduced a method, referred
to as chain-of-trees, specifically designed for the purpose of effi-
ciently constructing search spaces for constraint-based auto-tuning.
The chain-of-trees approach starts with identifying groups of in-
terdependent parameters. Two parameters are interdependent if
they both occur in the syntax tree of the same constraint descriptor.
For each parameter group, a tree is constructed that encodes all
possible combinations of interdependent parameter values. Finally,

https://orcid.org/0000-0003-2295-8263
https://orcid.org/0000-0002-2947-9444
https://orcid.org/0000-0002-7508-3272
https://doi.org/10.1145/3754598.3754601
https://doi.org/10.1145/3754598.3754601

R R . I T Y

ICPP °25, September 08-11, 2025, San Diego, CA, USA

__global__ void calculate_temp (float ««Tout, float «+«Tin, float
Tambient, float ««Power, float3 R, float dt) {
int x = blockldx.x = blockDim.x + threadldx.x;
int y = blockldx.y » blockDim.y + threadldx.y;
Toutlyl[x] = Tin[yl[x] + dt - (power[y][x] +
(Tin[y+1][x] + Tin[y-1][x] - 2.0«Tin[y][x]) *« R.y +
(Tin[y J[x+1] + Tin[y]J[x+1] - 2.0«Tin[y][x]) * R.x +

(Tambient - Tin[y][x]) « R.z);

Listing 1: Example Hotspot kernel in HIP/CUDA.

the trees are linked together to form a chain-of-trees. The chain-
of-trees method is widely considered to be state-of-the-art and has
been integrated into several auto-tuning frameworks, including
ATF [29], BaCO [16], PyATF [31], and KTT [26].

In this paper, instead of adopting a customized solution for
constraint-based auto-tuning, such as chain-of-trees, we investigate
the use of methods with a more robust mathematical foundation. In
particular, we show that the problem of search space construction
in constraint-based auto-tuning can be automatically reduced to
a Constraint Satisfaction Problem (CSP). To enable the use of CSP
in a state-of-the-art auto-tuner, we employ various techniques, in-
cluding run-time compilation to translate user-defined constraint
functions to representations that can be used directly in existing
CSP solvers, as well as major improvements to the performance of
such solvers. We evaluate the CSP and chain-of-trees methods on a
wide variety of search spaces, including the search spaces used by
Rasch et al. [29]. Evaluation shows that our optimized CSP-based
search space construction method is four orders of magnitude faster
than brute force construction, three orders of magnitude faster than
an unoptimized CSP solver, and one to two orders of magnitude
faster than other state-of-the-art auto-tuning frameworks.

Our work has been integrated into the auto-tuning framework
Kernel Tuner [37] and a Python-based CSP solver named python-
constraint, both existing open-source projects with a substantial
number of users, to benefit both communities.

The rest of this paper is structured as follows. Section 2 provides
a high-level introduction to the role of constraints in auto-tuning.
Section 3 discusses related work. Section 4 describes the design
and implementation of our method. In Section 5, we evaluate the
efficiency and scalability of our optimized CSP-based approach
against various state-of-the-art solutions, and Section 6 concludes.

2 Constraint-based Auto-tuning

This section provides a general introduction to auto-tuning using
an example kernel to illustrate how constraints arise when creating
tunable applications for modern highly parallel architectures.

We will use the Hotspot kernel from the BAT [35] benchmark
suite of tunable kernels as an example. This Hotspot kernel, adapted
from the Rodinia Benchmark suite [11], simulates heat dissipation
in a microprocessor based on the processor’s architectural floor
plan, thermal resistance, ambient temperature, and simulated power
currents. Listing 1 shows the Hotspot kernel code in HIP/CUDA,
simplified for readability by removing bound checks.

The kernel uses a two-dimensional thread block to calculate the
temperature of the chip at the new time step, where each thread
computes one value in the output matrix Tout. In this kernel, we
can change the thread block x and y dimensions without affecting
the output, as long as we create enough thread blocks to cover the

Floris-Jan Willemsen, Rob V. van Nieuwpoort, and Ben van Werkhoven

KTT
auto minWGConstraint = []J(const std::vector<uint64_t>& v) {return
v[o] « v[1] >= 32;};
tuner . AddConstraint (kernel ,
minWGConstraint) ;
auto maxWGConstraint = [](const std::vector<uint64_t>& v) {return
v[0] « v[1] <= 1024;};
tuner . AddConstraint (kernel ,
maxWGConstraint) ;

{"thread_block_x", "thread block_y"},

{"thread_block_x", "thread_block_y"},

ATF combines tunable parameter and constraint declaration
auto thread_block_y = atf::tuning_parameter("thread_block_y",
atf::interval <size_t >(1, N), [&](size_t thread_block_x){
return (thread_block_x=«thread_block_y == 32 &&
thread_block_x«thread_block_y <= 1024) });

// PyATF uses an interface similar to ATF, but in Python

thread_block_y = TP('thread_block_y ', Interval (1, M), lambda
thread_block_y , thread_block_x: thread_block_x=«thread_block_y
>= 32 and thread_block_x=«thread_block_y <= 1024)

// Kernel Tuner (lambda-based constraint API)
constraint = lambda p: 32 <= p["thread_block_x"] «
p["thread block_y"] <= 1024

Kernel Tuner (string-based constraint API)

constraint = "32 <= block_size_x+«block_size_y <= 1024"

Listing 2: Example of constraints specification in different tuners.

entire problem domain. In other words, the thread block dimensions
in x and y are tunable parameters that affect the performance but not
the outcome. The optimal values for these parameters are highly
specific to the kernel, the target hardware platform, and the input
problem. We thus select a wide range of values for both parameters.

However, to ensure sufficient parallelism, we need to make sure
that the thread block contains at least 32 threads. In addition, most
parallel architectures pose an upper bound on the number of threads
per block, which can be queried before tuning. For simplicity, we
here assume that this limit is 1024 threads. These restrictions on
the two parameters together form a constraint, namely
32 <= thread_block_x * thread_block_y <= 1024.

Different autotuners support different formats for specifying
constraints, as illustrated in Listing 2. ATF and PyATF both de-
fine constraints directly on the last parameter of a group of in-
terdependent parameters, whereas KTT and Kernel Tuner define
constraints separately from the tunable parameters. Kernel Tuner
allows constraints to be defined as lambda functions or using string
expressions. The model that all tuners follow is that the lambda
functions, or string expressions, should evaluate to True for any
specific combination of tunable parameter values to be considered
a valid candidate solution, or code variant, in the search space.

The constraint defined in Listing 2 only involves the thread
block dimensions. However, the fully optimized version of the
Hotspot kernel contains many more tunable parameters and con-
straints. For example, the number of output elements computed
by each thread can be varied in both the x- and y-dimensions,
introducing two more tunable parameters. Another tunable pa-
rameter (sh_power) controls whether or not to cache the Power
values in shared memory. Together, these parameters form another
constraint, namely (thread_block_x * work_per_thread_x) =*
(thread_block_y * work_per_thread_y) * sh_power * 4
<= max_shared_memory_per_block to avoid exceeding the maxi-
mum amount of shared memory allowed per block in bytes. The full
Hotspot kernel is even more complex and also implements temporal

Efficient Construction of Large Search Spaces for Auto-Tuning

Table 1: Overview of constraint support and search space construction methods
in related work and this work (Kernel Tuner). * While ytopt and GPTune are
actively maintained, dependencies ConfigSpace and scikit-optimize are not.

Tuner Open Actively Constraints API Search Space Con-
Source developed struction

AUMA [13] v X n/a external

CLTune [25] v X C++ brute-force

OpenTuner [2] v X n/a brute-force

ytopt [42] v Vx Python ConfigSpace

GPTune [21] v Vx Python scikit-optimize.space

KTT [26] 4 v C++ chain-of-trees

ATF [28] v v C++ chain-of-trees

BaCO [16] v X JSON chain-of-trees

PyATF [31] v v Python chain-of-trees

Kernel Tuner v v Python CSP solver

tiling, partial loop unrolling, and double buffering of the temper-
ature field in shared memory, resulting in several more complex
constraints. For further specification of the kernel see [35].

3 Related Work

Table 1 shows an overview of support for specifying constraints,
as well as the method used for search space construction in related
auto-tuning frameworks. As we can see, some frameworks rely
on brute force search space construction, ytopt and GPTune use
ConfigSpace and scikit-optimize. space respectively, while the
chain-of-trees method is most commonly used. We will briefly
discuss the pros and cons of these different approaches.

In the absence of constraints, the search space is defined as the
Cartesian product of all possible combinations of all tunable param-
eter values. In brute-force search space construction, the approach
is to simply iterate through all possible combinations and filter out
combinations that violate the constraints. This is reasonable for
small search spaces, but becomes increasingly time-consuming as
the search space size and number of constraints increase. For vari-
ous auto-tuning applications, the number of valid configurations in
the search space is orders of magnitude smaller than the Cartesian
product size, causing the vast majority of generated and evaluated
combinations to be discarded, wasting time and resources.

ConfigSpace and scikit-optimize.space are both Python
packages that implement functionality to represent multidimen-
sional configuration spaces. Both approaches do not enumerate or
store individual configurations, but instead provide an interface
to generate random samples from the search space. As constraint
resolution is not supported by scikit-optimize.space, GPTune
relies on an additional internal check on sampled points. While
ConfigSpace does allow users to specify constraints, called for-
bidden clauses in ConfigSpace, these constraints are again only
checked after generating the sample point. The advantage of this
approach is its simplicity and ability for uniform sampling over
all points in the unconstrained Cartesian space. However, the dis-
advantage of this approach is that constraints are not taken into
account when generating samples, which has the same efficiency
downsides as brute force search space construction.

Rasch et al. [28] introduced the chain-of-trees structure to rep-
resent constrained search spaces in constraint-based auto-tuning.
Parameters are grouped based on interdependencies in the con-
straint functions, and each group is represented by a tree that
encodes valid parameter combinations. These trees are then linked
sequentially, forming a chain. This structure can reduce redundancy

[LINTFE

ICPP °25, September 08-11, 2025, San Diego, CA, USA

= Problem()
.addVariables("block_size_x",

P

P [1,2,4,8,161+[32xi for i in range(1,33)1)
p.addVariables("block_size_y",
P

P

[2%xi for i in range(6)1)
.addConstraint (MinProd (32, ["block_size_x", "block_size_y"1))
.addConstraint (MaxProd (1024, ["block_size_x", "block_size_y"1))

Listing 3: Example of a python-constraint problem definition.

by reusing shared subtrees, which may lead to lower memory us-
age compared to flat representations. Independent parameters are
handled as single-parameter trees.

In Section 4, instead of adopting a customized solution for constraint-

based auto-tuning such as chain-of-trees, we investigate the fea-
sibility of using established methods with a robust mathematical
foundation for efficient search space construction.

4 Application and Optimization of CSP Solvers

In this section, we discuss the design and implementation details of
our novel method for efficiently constructing large search spaces
for constraint-based auto-tuning. Section 4.1 examines various
constraint-solving techniques to formalize the relation with auto-
tuning and find a robust solver best suited to the problem context.
Section 4.2 describes the automatic optimization of user-defined
constraints, followed by solver optimizations in Section 4.3 to im-
prove efficiency. Finally, Section 4.4 details how the resulting search
space is represented and applied in auto-tuning frameworks.

4.1 Using Constraint Solvers in Auto-tuning

The search space construction problem, where parameter values
and constraints must be resolved to all valid combinations, can
generally be encoded as a Boolean Satisfiability Problem (SAT) [8],
Satisfiability Modulo Theories (SMT) [6], or Constraint-Satisfaction
Problem (CSP) [10]. Among SAT, SMT, and CSP, the technique clos-
est to auto-tuning search space construction is CSP. While SAT
deals with Boolean variables and SMT extends SAT with theories
like arithmetic or arrays, CSP solvers offer high-level abstractions
suitable for modeling complex constraints that are otherwise diffi-
cult to efficiently express, making them better suited for modeling
the complex relationships found in auto-tuning problems.
We can formalize the auto-tuning search space construction
problem as a CSP defined by # = (X, D, C), where:
e X = {x1,x2,...,xn} is a finite set of variables, each corre-
sponding to a tuning parameter (e.g., block size, tile width).
e D={D1,D,,...,Dy} is a set of finite domains, where D; is
the set of legal values for variable x;.
e C= {C],Cg,..
c;j is a predicate over a subset of variables scope(cj) C X.
A solution to the auto-tuning search space is then a total as-
signment V : X — |JD; such that V(x;) € D; for all i, and all
constraints c; € C are satisfied under V. The overall auto-tuning
objective is to determine the optimal configuration as

0* = arg max JH; I, (Ain), where we have an application A; on a
Vv

.,Cm } is a finite set of constraints, where each

vE
hardware platform H; for an input dataset Iy to maximize perfor-
mance ij, 1, (A;) over the code variants in V.

In addition, there are practical considerations when it comes to
choosing a solver to build on. As we will implement our solver in
the Python-based Kernel Tuner, the solver should be deployable in a
Python environment. Notable options include OR-Tools [22] and the
Z3 solver in PySMT [34], which provide highly expressive modeling

ICPP °25, September 08-11, 2025, San Diego, CA, USA

capabilities and efficient solving algorithms. However, most solvers
aim to find any solution, rather than all solutions, as required in
the case of auto-tuning search space construction. To obtain all
solutions, such solvers must iteratively find a solution, add this
solution as an additional constraint, and look for the next solution
until there are no solutions left [9]. If there are many solutions, as
is commonly the case with auto-tuning problems, this can have
a substantial negative impact on performance, as will be shown
in Section 5.2. A notable exception to this is python-constraint [23],
as this is a CSP-based Python package capable of finding all solu-
tions, which we will use as the basis of our implemented method.

4.2 Parsing Constraints

Having formalized the auto-tuning search space construction to
a CSP problem, we must now transform the Kernel Tuner con-
straints, such as in Listing 2, to a format optimal for CSP solvers.
To this end, we introduce a parser for constraints, which has three
important benefits: to break down constraints into the smallest
subsets of variables, to apply the more efficient specific constraints
instead of generic functions where possible, and to provide optimal
performance without requiring users of the auto-tuner to write
constraints in a complex format that requires an understanding of
how CSP solvers work.

To address the latter benefit first, both CSP-solvers and auto-
tuners have distinct interfaces consisting of specific function calls or
a form of domain-specific language when defining the constraints.
As seen before for auto-tuners in Listing 2, an example of a python-
constraint problem definition is given in Listing 3.

However, as opposed to the users of CSP-solvers, auto-tuning
users are generally not aware of the inner workings of the search
space construction process and the specific constraints available
that result in efficient resolution of the search space. Instead, we
provide users the option to write their constraints as Python lamb-
das or the Python-evaluable string format, both seen in Listing 2,
which can then be optimized by our parser via Abstract Syntax
Trees. This design has several benefits. It provides a familiar format
for constraints, since Python is already used as the interface lan-
guage. At the same time, our parser can rewrite these constraints,
allowing the application of specific constraints instead of generic
functions and the decomposition of constraints into subsets.

The automatic reduction of constraints is particularly important
to obtain efficiency in practice, as users unfamiliar with the intrin-
sics of constraint solving, such as the users of auto-tuning frame-
works, might write sub-optimal constraints. For example, consider
the constraint 2 <= block_size_y <= 32 <= block_size_x *
block_size_y <= 1024, slightly different from Listings 2 and 3,
where block_size_x, block_size_y are tunable parameters with
numerical values. Constraints cannot be evaluated until values for

1. User-specified

N 2 <= block_size_y <= 32 <= block_size_x * block_size_y <= 1024
constraint

2. Decomposition

into subsets 32 <= block_size

2 <= block_size_y X * block_size_y

block_size_y <= 32 block_size_x * block_size_y <= 1024

«— | [«

3. Application of
specific built-in
constraints

MinSum(2, [block_size_y])

[MaxSum(sZ, [block_size_y]) | MaxProd(1024, [block_size_x, block_size_y])

Figure 1: The optimization of a constraint via the parsing pipeline.

MinProd(32, [block_size_x, block_size_y])

Floris-Jan Willemsen, Rob V. van Nieuwpoort, and Ben van Werkhoven

Algorithm 1: Obtaining all valid configurations as S (simplified).

Input: Variables X = {x,..., Xp, } with domains D, constraint set C
1 A—0;S«0; > current (partial) assignment; solution set
2 7 « SortVariables(X) ; > sorted on number of constraints involved
3 Be—((m,A)); > backtrack stack of states
4 while B # 0 do // main search loop
5 (7, A) «— B.pop();
6 ifVxenm:xe Athen // add to solutions if all variables assigned
7 | S« SU{A}; continue;
8 x « NextUnassigned (7, A);
9 foreach v € D(x) do // try all values for x

[T
= S

Alx] « v;
if CheckConstraints(A, C) then B.push(r, A) ;
A.erase(x) ; > undo and try next value

-
)

return S;

-
)

the involved parameters are at least partially resolved, resulting in
subpar performance in the case of compound statements like the
given example, as it depends on the resolution of both parameters.
This can be improved by automatically breaking down the compos-
ite constraint into multiple constraints with fewer variables where
possible. This example can be decomposed as shown in Step 2 of
Figure 1, which allows partially resolved values for block_size_x
or block_size_y to discard invalid configurations early.

In addition, this automatic reduction enables the application of
specific constraints, as is the case with the example, which can
be represented with specific constraints as shown in Step 3 of
Figure 1. As will be further discussed in Section 4.3.2, the application
of specific constraints can preemptively exclude values through
preprocessing, resulting in an even more efficient construction.

4.3 Implementation of Optimizations

To obtain the level of performance required to construct auto-tuning
search spaces efficiently, we implement several key improvements
in various areas of the python-constraint package: algorithmically
(Section 4.3.1), by extending constraints (Section 4.3.2), engineering
(Section 4.3.3), and by tailoring output formats (Section 4.3.4).

4.3.1 Algorithm. We select and optimize a backtracking solver for
finding all solutions rather than any solution. Shown simplified in
Algorithm 1, it maintains a dictionary of variable assignments and
uses a stack-based approach for iterative backtracking, avoiding
recursive function calls. For each selected variable, domain values
are checked against the constraints. If a constraint is violated, the
algorithm backtracks by restoring states until all possibilities are
explored. We optimize this algorithm further by sorting the vari-
ables on the number of internal constraints, making it faster to find
unassigned variables, and by reducing the number of sorts required.

4.3.2 Constraints. We expand and improve built-in specific con-
straints to optimize constraint operators commonly used in auto-
tuning. By applying knowledge of the operation, their efficiency can
be improved over generic functions. For example, given a constraint
where p-q > 0, we know to ignore all cases where (p < 0) VY (¢ < 0).
We add MaxProduct and MinProduct constraints as they are com-
monly used in auto-tuning constraints (e.g. a maximum product
of block sizes). We also improve and add preprocessing steps to
the various existing constraints, such as MaxSum and MinSum. All
specific constraints are precompiled for further efficiency gains.

Efficient Construction of Large Search Spaces for Auto-Tuning

However, not all constraints can be expressed as built-in con-
straints, for example when using an operation that is not as com-
mon. Such cases are parsed to Function constraints, which we have
optimized by employing function rewriting and dynamic runtime
compilation, as the one-off expense of compilation to bytecode is
offset by the many times a Function constraint is usually executed.

4.3.3 Employing C-extensions. In general, C and similar languages
outperform Python in terms of execution speed [1, 43]. To attain
this level of performance without losing the flexibility and user-
friendliness of Python [3], we employ C-extensions. We transpile
the codebase from Python to C-code using Cython [7], which is
then compiled into Python-importable C-extensions. We added
type hints where possible to aid in compilation.

4.3.4 Output Formats. We implement various output formats to
avoid expensive rearrangements to different formats. Expensive
rearrangement of the structure in which solutions are output by
the solver is mitigated by providing output formats that are close
to the internal representation, further described in Section 4.4.

4.4 Search Space Representation

With the efficient construction of search spaces implemented in
python-constraint, we consider how this is represented and applied
in auto-tuning frameworks for a comprehensive approach.

After the search space construction, optimization algorithms
use the information obtained in the construction step to select
configurations. Instances of this are obtaining the true bounds of
the search space to use balanced initial sampling methods or the
selection of valid neighbors that have not been evaluated yet.

This highlights a key advantage of our method over the dynamic
approaches discussed in Section 3. Important search space charac-
teristics, such as the true parameter bounds, can guide optimization
algorithms more effectively and facilitate the use of stratified sam-
pling techniques, such as Latin Hypercube Sampling [41]. However,
these characteristics can not be reliably used in dynamic approaches,
as a resolved search space is required. Furthermore, randomized
sampling is inherently biased to the sparser parts of the chain-of-
trees, although this has been addressed by BaCO [16]. Moreover,
selecting valid neighbors of configurations as extensively used by
various optimization algorithms is potentially expensive.

Instead, we fully resolve the search space before starting the
tuning process, with a minimal impact on the total execution time,
to incorporate the full information of the search space in the ini-
tial sampling and optimization algorithms. As operations such as
sampling and finding valid neighbors are commonly used in auto-
tuning, it can be useful to provide an abstract representation of the
search space that implements these operations, providing various
views and mappings on the configurations in the search space.

We have implemented this in Kernel Tuner as the SearchSpace
class, which takes the tunable parameters and constraints based
on the user specification, constructs the search space using our im-
plementation, and provides various representations and operations
on the resulting search space. The SearchSpace class has multiple
internal representations for varying purposes, such as hash- and
index-based for efficient lookups. Externally, it provides a single in-
terface for all search space-related operations, promoting reuse. For

ICPP °25, September 08-11, 2025, San Diego, CA, USA

example, the mutation step in the genetic algorithms optimization
algorithm requires selecting only valid neighbors within a certain
Hamming distance. This, along with other neighbor selection algo-
rithms, is implemented in the SearchSpace class and can be indexed
before running the algorithm, improving overall performance.

5 Evaluation

In this section, we evaluate the advancements presented in Section 4
to determine their scalability and performance impact. First, we
discuss how we compare against the current state-of-the-art solvers
in Section 5.1. We then evaluate the solvers on a large collection
of synthetically generated search spaces with varying characteris-
tics to assess scalability differences in Section 5.2. Following this,
we evaluate the solvers on a variety of real-world applications to
assess the performance improvement in Section 5.3. Finally, we val-
idate the practical impact of our method on the entire auto-tuning
pipeline in Section 5.4.

The evaluations in this work are performed on the sixth gener-
ation DAS VU-cluster [4] using an NVIDIA A100 GPU node. The
GPU is paired with a 24-core AMD EPYC-2 7402P CPU, 128 GB of
memory, and running Rocky Linux 4.18. For all tests, the results
of each solver were validated against a brute-force solution of the
search space. Our evaluation implementation is publicly available.

5.1 Comparison against state-of-the-art

To provide additional reference on the performance in this evalua-
tion, we compare the results to the state-of-the-art in auto-tuning
search space construction, the chain-of-trees of Auto-Tuning Frame-
work (ATF). ATF has two independent implementations, in C++ [28]
and Python [31], both of which we use in this evaluation to com-
pare our method. The C++ version available as of August 2024
with Python bindings is used and denoted as ATF in the results.
The Python version called pyATF is used at version 0.0.9, the latest
version at the time of writing.

Due to the large number of search spaces used in this evaluation,
it is not feasible to write each of these search space definition files
by hand for both ATF implementations, and we have instead writ-
ten parsers that define the ATF search space files from an abstract
definition of the search spaces. Both implementations of ATF have a
notation that combines the definition of tunable parameters, values,
and constraints into one statement, as seen in Listing 2. Hence,
ATF constraints can only reference tunable parameters that have
been previously defined. To provide search space definitions that
are compliant with this ATF format, the parsers account for the
parameter-constraint order relation and convert to built-in ATF
types, such as intervals, where applicable. To reflect the user expe-
rience as accurately as possible, the search space file compilation
time is included in the total construction time. The C++ version of
ATF and search space files is compiled with GCC 12.4.0 using the
optimization commands recommended by the ATF documentation.

In addition, we compare with PySMT version 0.9.6, using the
Z3 solver developed by Microsoft for software verification and
analysis [12]. This allows for evaluation of scalability differences for
solvers that do not support enumerating all solutions, as discussed
in Section 4.1. As with ATF, we developed a custom parser that
employs PySMT-specific operations where applicable.

https://www.cs.vu.nl/das/clusters.shtml
https://github.com/fjwillemsen/kernel_tuner_paper

ICPP °25, September 08-11, 2025, San Diego, CA, USA

Density

10 10 10
A: Cartesian size (non-constrained size)

Density

10 10 10* 10
B: Number of valid configurations

Density

0.5 0.6 0.7 0.8 0.9 1.0
C: Fraction of search space constrained

Figure 2: Density of three characteristics of the 78 synthetic search spaces.

Black bottom bar marks the interquartile range and the white line the median.

5.2 Synthetic Tests

To understand how search space characteristics influence construc-
tion time and scaling of solvers, we evaluate on synthetic tests.

5.2.1 Experimental setup. We generate a set of search spaces with
a varying number of dimensions (between 2 and 5), target Cartesian
sizes (with {1x10%,2x 104, 5x10% 1x 10, 2% 10°, 5% 10%, 1 x 10°}),
and number of constraints (between 1 and 6). While these arbitrary
parameters result in search spaces that are not as large and do not
have as many tunable parameters as the real-world search spaces
evaluated on in Section 5.3, the goal of these in total 78 synthetic
search spaces is to gain insight into which solver provides good
scalability across the variations in these factors.

Given a Cartesian size, a number of dimensions, and a number of
constraints, we want to generate a synthetic search space. To pre-
vent an unfair advantage to solvers optimized for a limited number
of dominant dimensions, the number of values per dimension v is
kept approximately uniform. This is done by first determining the

number of values per dimension as v = sé, where s is the desired
Cartesian size and d is the desired number of dimensions. For each
of the dimensions, a linear space with v number of elements is
instantiated. Given a non-integer value of v, this is rounded to an
integer for all but the last dimension, where v is rounded contradic-
tory (e.g. 5.8 — 5,5.2 — 6) to be closer to the desired Cartesian size.
A list of constraints involving a variety of operations is generated
for each combination of dimensions, which are randomly chosen
up to the desired number of constraints.

Figure 2 shows the distribution of the resulting 78 search spaces
for three characteristics. Figure 2A shows the actual Cartesian size,
representing the total number of possible configurations before con-
straints are applied, which corresponds to the set of target values.
Figure 2B depicts the number of valid configurations remaining
after constraints are enforced, resulting in an approximately bell-
shaped curve. The number of valid configurations is on average
one order of magnitude below the Cartesian size. Finally, Figure 2C
displays the fraction of sparsity of the search space, i.e., the fraction
of non-valid configurations relative to the Cartesian size. Though
the fraction of constrained configurations is skewed toward higher
values, indicating a propensity towards sparsity, a wide range of
variations in sparsity is present.

5.2.2 Results. The performance of the evaluated methods on these
synthetic search spaces is displayed in various plots in Figure 3,

Floris-Jan Willemsen, Rob V. van Nieuwpoort, and Ben van Werkhoven

where the colors used correspond to the colors of the methods in
the Figure 3C barplot. To determine the impact of the optimizations
described in Section 4.3, the original method denotes the use of
vanilla python-constraint before the optimizations, whereas our
optimized method includes the optimizations of Section 4.3.

Figure 3A shows a clear positive correlation between the number
of valid configurations and the execution time across all methods,
with a roughly linear trend on the log-log scale, suggesting a power-
law relationship. We overlay a log-log linear regression to further
investigate the scaling of each method, where a lower slope indi-
cates better scaling towards larger search spaces in the number of
valid configurations, and a slope of 1 indicates linear scaling. All
methods have a highly significant linear fit with a p-value < 0.05.

For the methods ATF and pyATF, we observe approximately lin-
ear scaling, with slopes of 0.938 and 0.999, respectively. The original
unoptimized python-constraint and brute force methods appear to
perform similarly to each other and exhibit good scaling with slopes
of 0.663 and 0.571, respectively. While they are outperformed by
ATF on these search spaces, the difference in scaling means both
methods appear to soon outperform ATF on larger search spaces,
which we extrapolate to be at ~ 1.193 - 10° and ~ 4.493 - 107 valid
configurations respectively. It is important to note that this differ-
ence in scaling is expected, given that brute-forcing will perform
relatively better the denser a search space is (i.e. many valid con-
figurations relative to the Cartesian size of the search space) as it
will check the constraints on all configurations, where the chain-
of-trees is optimized towards sparse search spaces. Our optimized
method is consistently the fastest, always constructing the search
space within less than a second, and exhibits adequate scaling with
a slope of 0.860. As based on this data our optimized method would
not be overtaken by the brute force and original methods until
~1.120 - 10" and ~ 3.892 - 10! valid configurations respectively,
well beyond the size of these synthetic search spaces, we expect
our method to perform best overall.

Figure 3B presents the performance as a continuous probability
density curve using a kernel density estimate (KDE). As expected
due to their practically linear scaling, ATF and pyATF demonstrate
wide variance in performance. Our optimized solver consistently
achieves the lowest execution times, with several orders of magni-
tude better performance compared to the other solvers.

Figure 3C summarizes the performance of each solver over all
search spaces. It is remarkable that pyATF takes considerably longer
than the brute-force method on these search spaces, which might be
due to how optimized the chain-of-trees approach is to highly sparse
search spaces. It is also noteworthy that our optimized method
outperforms the original unoptimized implementation of python-
constraint by several orders of magnitude, demonstrating the ad-
vantage of our optimizations. Our optimized method achieves a
96x speedup over the brute-force method (4.75 seconds versus 455.3
seconds), a 16x speedup over ATF, and a 2547x speedup over pyATF.

As described in Section 4.1, a traditional solver without support
for finding all solutions requires adding the previous solution as a
constraint and iterating over the solutions until all solutions have
been found. To demonstrate the lack of scalability of such a solver,
Figure 4 compares PySMT using the Microsoft Z3 solver to the brute-
force method and our optimized method. To make executing this
experiment feasible, we reduce the size of the generated synthetic

Efficient Construction of Large Search Spaces for Auto-Tuning

ICPP °25, September 08-11, 2025, San Diego, CA, USA

s 10*4
F hr
F min
g e 3
()} 10 7
o &
2
Es
3 o &
@ r > 2
» - 10" 3
c F min
)
£
=
10"
E ms
10° 10° 10* 10° 0.0 0.1 0.2 0.3 0.4 0.5 Brute original optimized ATF pYATF
.)) . B: Density force
A: Number of valid configurations C: Method

Figure 3: Search space construction performance on synthetic tests. Lower times are better. Colors correspond to Figure 3C barplot methods. Each plot provides a
different view of the same data, with A and B showing the performance on individual search spaces, and C showing the sum of all search spaces.

e Bruteforce @ optimized e PySMT

F min

Time in seconds

T
0.0 0.2 0.4 0.6
B: Density

A: Number of valid configurations
Figure 4: Search space construction performance of PySMT on synthetic tests.

search spaces by one order of magnitude in this experiment. As seen
in Figure 4, PySMT performs poorly relative to both brute force
and our optimized method. As expected, this difference increases
as the number of valid configurations increases, demonstrating the
infeasibility of this approach when many valid configurations are
present. Despite the reduced search space sizes, PySMT with the Z3
solver still takes nearly a thousand seconds on the largest search
spaces, whereas the brute-force solver takes about ten seconds. Our
optimized solver vastly outperforms PySMT, taking about as long to
solve the largest search spaces as PySMT with the Z3 solver takes to
solve the smallest search spaces. In fact, the PySMT solver exhibits
superlinear scaling with a slope of 1.090, as opposed to the slope of
0.649 of our optimized method. As it is infeasible to evaluate the
large search spaces of the selected real-world applications, PySMT
with the Z3 solver will not be included in the remainder of the
evaluation.

5.3 Real-world Applications

To evaluate solver performance on the search spaces of real-world
applications, we select the three largest search spaces in the Bench-
mark suite for Auto-Tuners (BAT) [35]. These are Dedispersion,
Hotspot, and ExpDist. In addition, we use the relatively large search
spaces of the MicroHH computational fluid dynamics kernel [36],
as well as the commonly used General Matrix Multiplication kernel
(GEMM) [24]. To provide reference points for a fair comparison to
ATF, the Probabilistic Record Linkage (PRL) kernel used in the chain-
of-trees evaluation [29] is used as well, resulting in three additional
search spaces for a total of eight real-world search spaces.

The characteristics of the real-world search spaces are displayed
in Table 2, where the rightmost column denotes the average number
of constraint evaluations that are required to brute-force solve a
search space. For each combination in the Cartesian product, all
constraints need to be evaluated until the combination is rejected or
all constraints have been evaluated. Hence, assuming uniform prob-
ability among the constraints, the average number of constraint
evaluations can be calculated by taking the average of the best case
(the first constraint rejects the combination) and worst case (the last
constraint rejects the combination), and adding all valid combina-
tions that are never rejected. Given a search space S, let S; be the set
of non-valid combinations, S, the set of valid combinations, and S,
the set of constraints, the average number of constraint evaluations
can be calculated as w + |Sy|. Descriptions of each of the
kernels and their search spaces are given in Sections 5.3.1 to 5.3.6,
before the results are discussed in Section 5.3.7.

5.3.1 Dedispersion. The Dedispersion kernel introduced in [32, 33]
and used in [35] is designed to compensate for the time delay expe-
rienced by radio waves as they propagate through space. This delay
occurs due to the frequency-dependent dispersion of the signal.
By applying a specific dispersion measure (DM) and reversing the
dispersion effect, the kernel reconstructs the original signal. During
the iteration over frequency channels, threads process multiple
time samples and dispersion measures in parallel. Comparing the
Dedispersion search space to the other evaluated search spaces of
Table 2, the resulting search space is the smallest in Cartesian size,
but as it has the highest percentage of valid configurations at nearly
50 %, it is not the smallest in number of valid configurations.

5.3.2 ExpDist. The ExpDist kernel described in [35] is utilized in
a localization microscopy application that performs template-free
particle fusion by integrating multiple observations into a single
super-resolution reconstruction [17]. During the registration pro-
cess, the ExpDist kernel is repeatedly invoked to evaluate the align-
ment of two particles. The algorithm exhibits quadratic complexity
with respect to the number of localizations per particle, making it
highly computationally intensive. The resulting search space is the
second-most sparse of the real-world search spaces in Table 2.

5.3.3 Hotspot. Previously discussed in Section 2, the Hotspot ker-
nel of [35] is part of a thermal simulation application to estimate

ICPP °25, September 08-11, 2025, San Diego, CA, USA

Table 2: Overview of the basic characteristics of the real-world search spaces and the mean values for each of the columns.

Floris-Jan Willemsen, Rob V. van Nieuwpoort, and Ben van Werkhoven

Name Cartesian size Constraint size Number of | Number of con- | Avg. unique pa- | Range of number | % of configura- | Avg. number of
parameters (di- | straints rameters per con- | of values per pa- | tionsin Cartesian | constraint evalua-
mensions) straints rameter size tions required

Dedispersion 22272 11130 8 3 2 1-29 49.973 33414

ExpDist 9732096 294000 10 4 2 1-11 3.021 23889240

Hotspot 22200000 349853 11 5 3.8 1-37 1.576 65900294

GEMM 663552 116928 17 8 3.25 1-4 17.622 2576736

MicroHH 1166400 138600 13 8 2.375 1-10 11.883 4763700

ATF PRL 2x2 36864 1200 20 14 2.429 1-3 3.255 268680

ATF PRL 4x4 9437184 10800 20 14 2.429 1-4 0.114 70708680

ATF PRL 8x8 2415919104 48720 20 14 2.429 1-8 0.002 18119076600

[Mean [307322534 [121403 [14875 [875 [2589 [1-1325 [1093 [2285902168 |

the temperature of a processor by considering its architecture and
simulating power currents. Through an iterative process, the ker-
nel solves a set of differential equations. The inputs to the kernel
consist of power and initial temperature values, while the output
is a grid displaying average temperature values across the chip. It
is interesting to note that the Hotspot search space is the largest
in number of valid configurations, second-largest in Cartesian size,
and has the highest number of values for a single parameter.

5.3.4 MicroHH. The computational fluid dynamics kernel of [36]
is used for weather and climate modeling, specifically for the simu-
lation of turbulent flows in the atmospheric boundary layer. In this
case, we use the search space resulting from the auto-tunable GPU
implementation of the advec_u kernel with extended parameter val-
ues as specified in the source of [15]. Looking at Table 2, it is notable
that the MicroHH search space is the closest to the mean values
of all search spaces in the number of parameters, number of con-
straints, and percentage of configurations. It is also second-closest
in constraint size and number of values per parameter, making it
perhaps the most average search space in our set of tests.

5.3.5 GEMM. Generalized dense matrix-matrix multiplication is
a fundamental operation in the BLAS linear algebra library and
widely used across various application domains. Known for its
high performance on GPU hardware, GEMM frequently serves as
a benchmark in studies of GPU code optimization [20, 25, 30]. In
this evaluation, we use the GEMM kernel of CLBlast [24], a tunable
OpenCL BLAS library. GEMM is implemented as the multiplication
of two matrices (A and B); C = @A - B + C, where a and f§ are
constants and C is the output matrix. The dimensions of all three
matrices are set to 4096 X 4096, resulting in a dense search space.

5.3.6 ATF PRL. The Probabilistic Record Linkage (PRL) kernel
used in [29] is a parallelized implementation of an algorithm that
is commonly used in data mining to identify data records refer-
ring to the same real-world entity. In this kernel, the input sizes
determine the size of the search space. As shown in Table 2, the
brute-force resolution of this search space with input sizes 8x8
requires 1.8119 x 100 constraint evaluations on average, which
took ~27 hours to execute. As an input size of 16x16 would require
4.639 X 10'2 constraint evaluations on average, it is not feasible
to brute force beyond the 8x8 input size. Because the brute-forced
solution is used for validation and serves as a reference point in the
performance comparisons, we use the search spaces resulting from
the ATF PRL kernel with input sizes 2x2, 4x4, and 8x8. It is notable
that while the 8x8 search space results in the largest Cartesian size
of the set, the ATF PRL search spaces are very sparse.

5.3.7 Results. Figure 5 presents the search space construction per-
formance across the eight real-world benchmarks for the five dif-
ferent constraint solver methods, as before in Section 5.2.

Figure 5A and Figure 5B illustrate the relationship between
search space size and solver performance, with a log-log linear
regression overlayed where significant (p-value < 0.05), as in Sec-
tion 5.2.2. In general, larger constrained search spaces (A) and
Cartesian sizes (B) result in increased search times, as previously
observed in Figure 3. For the ATF, original, and brute-force methods,
the significant scaling trend is along the Cartesian size of Figure 5B,
whereas for pyATF and our optimized method, this is on the num-
ber of valid configurations in Figure 5A. Our optimized method
achieves the lowest execution times across all search space sizes,
demonstrating its efficiency, and is the only solver that consistently
outperforms the other methods.

Figure 5C visualizes the distribution of execution times, provid-
ing an indication of the average performance and variability. It is
interesting to observe that while the original python-constraint
method is one order of magnitude faster than the brute-force method,
both methods have very similar distributions, as seen before in Fig-
ure 3B. A clear trend emerges from this plot, where our optimized
method has the least variability and is the only solver constructing
the search spaces in the sub-second domain.

In Figure 5D, the relation between how constrained a search
space is and solver performance is displayed. ATF and pyATF per-
formance appears to be strongly influenced by the sparsity, as for
fraction > 0.9 ATF performance is substantially better than the
original solver, in contrast to < 0.9, where at fraction ~ 0.5 even
the unoptimized original python-constraint outperforms ATF.

The number of tunable parameters displayed in Figure 5E does
not appear to have as much of an impact on performance as the
other plots discussed. Nevertheless, Figure 5E is useful to discern
the individual search spaces based on the number of parameters de-
scribed in Table 2. For instance, it can be noted that the performance
difference between our optimized method and all other methods
appears to be relatively stable, even for the ATF PRL search spaces,
as can be discerned by the number of tunable parameters, where
the three ATF search spaces have 20 tunable parameters.

Finally, Figure 5F summarizes the total time taken by each solver.
The brute-force approach is the least performant, taking nearly a full
day to resolve the eight search spaces. Although the original python-
constraint solver is faster than brute force, our optimized solver
achieves a ~2643x speedup over it, demonstrating the efficiency
of our optimizations. While ATF and pyATF achieve intermediate
performance levels, it must be noted that pyATF only outperforms
brute force and original because it does so on the two largest PRL

Efficient Construction of Large Search Spaces for Auto-Tuning

ICPP °25, September 08-11, 2025, San Diego, CA, USA

5

1073 [) ° Fd
10" 4 ° °
F hr
10° 4 o® ° 9
° g ° o® ° ®
102 3 ¢ ¢ F min
@ o® oll @ Y @
10" ° °
o0 ° °
[4 oo [) Y & : o0
o] ® ° [] ® o © E
10 * - é . H . s
1e ° D ® o0 L] °
103 hd ¢
72 ° 3 ° °
10 " 1
® °
_g T N T A T 5 T s T B T T B T o T T T T
S 10 10 10 10 10 10 10 10 0.0 01 02 03 04
3 A: Number of valid configurations B: Cartesian size (non-constrained size) C: Density
@ 5
£ 10°4 ° L0 -
g .
= 10 3) ° .
3 10 3
10" 1 13 ° °
o © o’ ° ° 4 . . F hr
10° 4 e o 5]
° ° o® . ° ° .] 10
10" 3 ° °
° [@® ° ° ° o °
[] (] ° °
0] Ooq °] 102 4
10 L] o ° ° ° E min
° °
41 @ LN . °
10 3@ ©
o1 ® LA ° (] 101 i
10 " 1§
° °
0.5 0.6 0.7 0.8 0.9 1.0 8 10 1" 13 17 20 Brute original optimized ATF pPyATF
D: Fraction of search space constrained E: Number of dimensions (tunable parameters) force
F: Method

Figure 5: Search space construction performance on real-world tests. Lower times are better. Colors correspond to Figure 5F barplot methods. Each plot provides a
different view of the same data; plots A-E show individual performance relative to a search space characteristic, and plot F shows the sum of all search spaces.

le9

180 1

160 -
140 -
120 -

Performance in gridpoints per second
S
o

80
Method
60 1 —— Bruteforce
40 A —— Optimized
204 —— pyATF
0 5 10 15 20 25 30

Tuning time in minutes

Figure 6: Best configuration performance found over a 30-minute auto-tuning
of the hotspot kernel using various search space construction methods.

search spaces, which have a disproportionate effect on the summed
time - on all other search spaces, pyATF is outperformed by both
methods, and ATF is not consistently better than original either.
The optimized solver consistently and considerably outperforms all
others: our optimized method achieves a ~20643x overall speedup
over the brute-force method (3.16 seconds versus 65230.47 seconds),
~44x over ATF, and ~891x over pyATF.

5.4 Overall impact in practice

To conclude this evaluation, we evaluate the impact of the search
space construction method on the overall auto-tuning process.
We auto-tune the hotspot kernel described in Section 5.3.3 using
the three Python-based solvers with a 30-minute time budget as an
illustrative example. To avoid influence by a specific optimization
algorithm, we use random sampling, and each run is repeated 10

16000 -
d
o
S] 14000 4
fr
[C]
-£ 12000
o
I}
]
£ 10000 - I
£ Method
& 8000 - —— Bruteforce
—— Optimized
6000 - — PYATF
0 2 4 6 8 10

Tuning time in minutes

Figure 7: Best configuration performance found over a 10-minute auto-tuning
of the GEMM Kernel using various search space construction methods.

times. Figure 6 shows the best-performing configuration found so
far during the tuning process, where higher is better. The time
passed before any configuration is found is spent constructing the
search space, which takes about eight minutes for brute-force and
takes over twenty minutes for pyATF, while our optimized method
is able to start to tune configurations almost immediately.

To affirm these findings, we repeat this experiment on the GEMM
kernel, adjusting the time budget by the ratio between the num-
ber of valid configurations of GEMM and hotspot seen in Table 2
to 10 minutes. While brute force fares substantially better, as ex-
pected due to the smaller and denser search space, the results are
otherwise very similar to those of the previous experiment. Most
importantly, both examples confirm that the search space construc-
tion method has a substantial impact on the quality of the overall
best configuration found within the time budget.

ICPP °25, September 08-11, 2025, San Diego, CA, USA

Overall, throughout this evaluation section, it is noteworthy
that our optimized solver consistently outperforms any alternative
on all of the search spaces by a wide margin, and the substantial
practical impact this can have on the overall auto-tuning process.
These findings emphasize the advantages of our optimized solver
in efficiently handling large and complex search spaces.

6 Conclusions

We introduced a novel approach to constructing auto-tuning search
spaces using an optimized Constraint Satisfaction Problem (CSP)
solver, addressing the specific challenges posed by the complexity
of auto-tuning and large search spaces. Our contributions, available
to the CSP-solving and auto-tuning community in the open-source
python-constraint2 and Kernel Tuner packages, substantially out-
perform state-of-the-art methods in search space construction per-
formance, enabling the exploration of previously unattainable prob-
lem scales in constraint-based auto-tuning and related domains.

Through rigorous evaluation, we demonstrated that our opti-
mized CSP-based approach reduces construction time by several
orders of magnitude, even for search spaces with billions of possible
combinations. On average over the evaluated real-world applica-
tions, our optimized method is four orders of magnitude faster than
brute force, three orders of magnitude faster than the unoptimized
CSP solver, and one to two orders of magnitude faster than the state-
of-the-art in search space construction. Our optimized search space
construction method reduces the construction time of real-world
applications to sub-second levels, eliminating it as a substantial fac-
tor in the overall tuning process overhead. In addition, our parsing
method allows users to write constraints that are as close to the
target language as possible, improving accessibility. Furthermore,
our method prevents skewed sampling and has additional benefits
for the efficiency of auto-tuning optimization algorithms.

This breakthrough allows researchers and developers to more
effectively harness the performance potential of modern hardware
and provides an efficient generic solver for similar problem domains.

Availability: The methods presented in this work are available
as user-friendly open-source software packages. For more informa-
tion, visit the Kernel Tuner and python-constraint repositories.

Acknowledgments: The CORTEX project has received funding
from the Dutch Research Council (NWO) in the framework of the
NWA-ORC Call (file number NWA.1160.18.316).

References

[1] Z. Alomari, O. E. Halimi, K. Sivaprasad, and C. Pandit. 2015. Comparative Studies
of Six Programming Languages.

[2] J. Ansel, S. Kamil, et al. 2014. Opentuner: An extensible framework for pro-
gram autotuning. In 23rd international conference on Parallel architectures and
compilation.

[3] M. Ateeq, H. Habib, A. Umer, et al. 2014. C++ or Python? Which One to Begin
with: A Learner’s Perspective. In Int. Conf. Teach. Learn. Comput. Eng.

[4] H.Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra, C. Snoek,
and H. Wijshoff. 2016. A Medium-Scale Distributed System for Computer Science
Research: Infrastructure for the Long Term. Computer (2016).

[5] P. Balaprakash, J. Dongarra, T. Gamblin, et al. 2018. Autotuning in High-
Performance Computing Applications. Proc. IEEE (2018).

[6] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. 2008. Satisfiability Modulo
Theories. In Handbook of Satisfiability.

[7] S.Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith. 2011.
Cython: The Best of Both Worlds. Comput. Sci. Eng. (2011).

[8] A.Biere, M. Heule, H. van Maaren, and T. Walsh. 2009. Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications.

(10]

[11

[12]

(13]

(15]

[16

(17]

(37]

[43

Floris-Jan Willemsen, Rob V. van Nieuwpoort, and Ben van Werkhoven

N. Bjorner, L. de Moura, L. Nachmanson, and C. M. Wintersteiger. 2019. Pro-
gramming Z3. In Engineering Trustworthy Software Systems.

S. C. Brailsford, C. N. Potts, and B. M. Smith. 1999. Constraint Satisfaction
Problems: Algorithms and Applications. In Eur. J. Oper. Res.

S. Che, M. Boyer,]. Meng, et al. 2009. Rodinia: A Benchmark Suite for Heteroge-
neous Computing. In Int. Symp. Workload Charact. ISWC.

L. De Moura and N. Bjerner. 2008. Z3: An Efficient SMT Solver. In Int. Conf. Tools
Algorithms Constr. Anal. Syst.

T. L. Falch and A. C. Elster. 2015. Machine Learning Based Auto-Tuning for
Enhanced OpenCL Performance Portability. In 2015 IEEE Int. Parallel Distrib.
Process. Symp. Workshop.

M. Frigo and S. G. Johnson. 1998. FFTW: An adaptive software architecture for
the FFT. In Acoust. Speech Signal Process.

S. Heldens and B. van Werkhoven. 2023. Kernel Launcher: C++ Library for
Optimal-Performance Portable CUDA Applications.

E. O. Hellsten, A. Souza, . Lenfers, et al. 2024. BaCO: A Fast and Portable Bayesian
Compiler Optimization Framework. In Proc. 28th ACM Int. Conf. Archit. Support
Program. Lang. Oper. Syst. Vol. 4.

H. Heydarian, F. Schueder, M. T. Strauss, B. van Werkhoven, M. Fazel, K. A. Lidke,
R. Jungmann, S. Stallinga, and B. Rieger. 2018. Template-Free 2D Particle Fusion
in Localization Microscopy. Nat. Methods (2018).

P. Hijma, S. Heldens, A. Sclocco, B. Van Werkhoven, and H. E. Bal. 2023. Opti-
mization Techniques for GPU Programming. ACM Comput. Surv. (2023).

J. Lawson, M. Goli, D. McBain, D. Soutar, and L. Sugy. 2019. Cross-Platform
Performance Portability Using Highly Parametrized SYCL Kernels. ArXiv (2019).
Y. Li, J. Dongarra, and S. Tomov. 2009. A Note on Auto-Tuning GEMM for GPUs.
In Computational Science — ICCS.

Y. Liu, W. M. Sid-Lakhdar, O. Marques, et al. 2021. GPTune: Multitask Learning
for Autotuning Exascale Applications. In Symp. Princ. Pract. Parallel Program.
G. LLC. 2015. Ortools: Google OR-Tools Python Libraries and Modules.

G. Niemeyer. 2005. Python-Constraint: a Module Implementing Support for
Handling CSPs over Finite Domain.

C. Nugteren. 2018. CLBlast: A Tuned OpenCL BLAS Library. In IWOCL.

C. Nugteren and V. Codreanu. 2015. CLTune: A generic auto-tuner for OpenCL
kernels. In 9th Int. Symp. on Embedded Multicore/Many-core Systems-on-Chip.

F. Petrovi¢ and J. Filipovi¢. 2023. Kernel Tuning Toolkit. SoftwareX (2023).

F. Petrovi¢, D. Stielak, J. Hozzova, J. Ol’ha, et al. 2020. A Benchmark Set of
Highly-Efficient CUDA and OpenCL Kernels and Its Dynamic Autotuning with
Kernel Tuning Toolkit. Future Gener. Comput. Syst. (2020).

A. Rasch and S. Gorlatch. 2018. ATF: A Generic Directive-based Auto-tuning
Framework. Concurr. Comput. Pract. Exp. (2018).

A. Rasch, R. Schulze, M. Steuwer, and S. Gorlatch. 2021. Efficient Auto-Tuning
of Parallel Programs with Interdependent Tuning Parameters via Auto-Tuning
Framework (ATF). ACM Trans Arch. Code Optim, Article 1 (2021).

S.Ryoo, C.I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A. Stratton, and
W.-mei W. Hwu. 2008. Program Optimization Space Pruning for a Multithreaded
Gpu. In Proc. 6th Annu. IEEEACM Int. Symp. Code Gener. Optim.

R. Schulze, S. Gorlatch, and A. Rasch. 2025. pyATF: Constraint-based Auto-Tuning
in Python. In Proc. 34th ACM SIGPLAN Int. Conf. Compil. Constr.

A. Sclocco, H. E. Bal, J. Hessels, et al. 2014. Auto-Tuning Dedispersion for Many-
Core Accelerators. In 2014 IEEE 28th Int. Parallel Distrib. Process. Symp.

A. Sclocco, S. Heldens, et al. 2020. AMBER: a real-time pipeline for the detection
of single pulse astronomical transients. In SoftwareX.

P. Team. 2022. PySMT: A Solver-Agnostic Library for SMT Formulae Manipula-
tion and Solving.

J. O. Torring, B. van Werkhoven, F. Petrov¢, F.-J. Willemsen, J. Filipovi¢, and
A. C. Elster. 2023. Towards a Benchmarking Suite for Kernel Tuners. In IEEE Int.
Parallel Distrib. Process. Symp. Workshop IPDPSW.

C. C. Van Heerwaarden, B. J. Van Stratum, et al. 2017. MicroHH 1.0: A Computa-
tional Fluid Dynamics Code for Direct Numerical Simulation and Large-Eddy
Simulation of Atmospheric Boundary Layer Flows. Geosci. Model Dev. (2017).
B. van Werkhoven. 2019. Kernel Tuner: A Search-Optimizing GPU Code Auto-
Tuner. Future Gener. Comput. Syst. (2019).

B. van Werkhoven, J. Maassen, H. E. Bal, et al. 2014. Optimizing Convolution
Operations on GPUs Using Adaptive Tiling. In Future Gener. Comput. Syst.

B. van Werkhoven, W. J. Palenstijn, and A. Sclocco. 2020. Lessons Learned in a
Decade of Research Software Engineering Gpu Applications. In ICCS.

R. C. Whaley, A. Petitet, and J. J. Dongarra. 2001. Automated Empirical Optimiza-
tions of Software and the ATLAS Project. Parallel Comput. (2001).

F.-J. Willemsen, R. van Nieuwpoort, and B. van Werkhoven. 2021. Bayesian
Optimization for Auto-Tuning GPU Kernels. In Int. Workshop Perform. Model.
Benchmarking Simul. High Perform. Comput. Syst. PMBS.

X. Wu, P. Balaprakash, M. Kruse, J. Koo, B. Videau, P. Hovland, V. Taylor, B. Geltz,
S. Jana, and M. Hall. 2024. Ytopt: Autotuning Scientific Applications for Energy
Efficiency at Large Scales. Concurrency and Computation (2024).

F. Zehra, M. Javed, D. Khan, and M. Pasha. 2020. Comparative Analysis of C++
and Python in Terms of Memory and Time.

https://pypi.org/project/python-constraint2/
https://pypi.org/project/kernel-tuner/
https://github.com/KernelTuner/kernel_tuner
https://github.com/python-constraint/python-constraint

	Abstract
	1 Introduction
	2 Constraint-based Auto-tuning
	3 Related Work
	4 Application and Optimization of CSP Solvers
	4.1 Using Constraint Solvers in Auto-tuning
	4.2 Parsing Constraints
	4.3 Implementation of Optimizations
	4.4 Search Space Representation

	5 Evaluation
	5.1 Comparison against state-of-the-art
	5.2 Synthetic Tests
	5.3 Real-world Applications
	5.4 Overall impact in practice

	6 Conclusions
	References

