
ASYNCHRONOUS EXECUTIONASYNCHRONOUS EXECUTION

1

LEARNING OBJECTIVESLEARNING OBJECTIVES
Learn about how commands are enqueued
asynchronously
Learn about the different reasons for
synchronization
Learn about the different ways to perform
synchronization

2

ASYNCHRONOUS EXECUTIONASYNCHRONOUS EXECUTION
All command submitted to a queue are done so asynchronously.
The functions return immediately and the command is run in a background thread.
This includes individual commands like memcpy and collections of commands
derived from a command group.
This means you have to synchronize with those commands.

3

SYNCHRONIZATIONSYNCHRONIZATION

There are a number of reasons why you need to synchronize with commands

Await completion of a kernel function.
Await the results of a computation.
Await error conditions which come from a failure to execute any of the commands.

4

SYNCHRONIZATION WITH KERNEL FUNCTIONSSYNCHRONIZATION WITH KERNEL FUNCTIONS

There are two ways ways to synchronize with kernel functions.

Calling wait on an event object returned from enqueuing a kernel function
command, either via a command group or a shortcut function.
Calling wait or wait_and_throw on the queue itself.

5

SYNCHRONIZING WITH KERNEL FUNCTIONSSYNCHRONIZING WITH KERNEL FUNCTIONS
(BUFFERS/ACCESSORS)(BUFFERS/ACCESSORS)

Calling wait on an event object
returned from enqueuing a command
group will wait for the commands from
that command group to complete.
This is how we have synchronized in
our examples so far.
This effectively creates a blocking
operations that will complete in place
by immediately synchronizing.

buf = sycl::buffer(data, sycl::range{1024});

gpuQueue.submit([&](sycl::handler &cgh){

 auto acc = sycl::accessor{buf, cgh};

 cgh.parallel_for<kernel_a>(sycl::range{1024},

 [=](sycl::id<1> idx){

 acc[idx] = /* some computation */

 });

}).wait();

	 	 	 	 	 	 	

6

SYNCHRONIZING WITH KERNEL FUNCTIONSSYNCHRONIZING WITH KERNEL FUNCTIONS
(BUFFERS/ACCESSORS)(BUFFERS/ACCESSORS)

Calling wait or wait_and_throw on a
queue will wait for all commands
enqueued to it to complete.
Note that command groups do not
create commands to copy data back to
the host application.

buf = sycl::buffer(data, sycl::range{1024});

gpuQueue.submit([&](sycl::handler &cgh){

 auto acc = sycl::accessor{buf, cgh};

 cgh.parallel_for<kernel_a>(sycl::range{1024},

 [=](sycl::id<1> idx){

 acc[idx] = /* some computation */

 });

});

gpuQueue.wait();

	 	 	 	 	 	 	

7

SYNCHRONIZING WITH KERNEL FUNCTIONS (USM)SYNCHRONIZING WITH KERNEL FUNCTIONS (USM)
Calling wait on an event object
returned from functions such as
memcpy or the queue shortcuts will
wait for that specific command to
complete.
Again this is how we have synchronized
in our examples so far.

auto devicePtr = usm_wrapper<int>(

 malloc_device<int>(1024, gpuQueue));

gpuQueue.memcpy(devicePtr, data, sizeof(int)).wait()

gpuQueue.parallel_for<kernel_a>(sycl::range{1024},

 [=](sycl::id<1> idx){

 devicePtr[idx] = /* some computation */
}).wait();

	 	 	 	 	 	 	

8

SYNCHRONIZING WITH KERNEL FUNCTIONS (USM)SYNCHRONIZING WITH KERNEL FUNCTIONS (USM)
Again calling wait or
wait_and_throw on a queue will wait
for all commands enqueued to it to
complete.
Note you generally don't want to call
wait on the queue after every
command, instead you want to create
dependencies between commands,
which we cover in the next lecture.

auto devicePtr = usm_wrapper<int>(

 malloc_device<int>(1024, gpuQueue));

gpuQueue.memcpy(devicePtr, data, sizeof(int));

gpuQueue.wait();

gpuQueue.parallel_for<kernel_a>(sycl::range{1024},

 [=](sycl::id<1> idx){

 devicePtr[idx] = /* some computation */
});

gpuQueue.wait();

	 	 	 	 	 	 	

9

SYNCHRONIZING WITH DATASYNCHRONIZING WITH DATA

There are multiple ways ways to synchronize with data, but it differs depending on the data
management model you are using.

When using the USM data management model you can synchronize the same way
you would for kernel functions, calling wait on an event or the queue.
When using the buffer/access data management model command groups don't
automatically copy data back so there are other ways to synchronize with the data.

Creating a host_accessor.
Destroying the buffer.

10

SYNCHRONIZING WITH DATA (USM)SYNCHRONIZING WITH DATA (USM)

Simply call wait on the event
returned from memcpy.
Alternatively call wait on the queue.

gpuQueue.memcpy(data, devicePtr, sizeof(int)).wait()
	 	 	 	 	 	 	

gpuQueue.memcpy(data, devicePtr, sizeof(int));

gpuQueue.wait();

	 	 	 	 	 	 	

11

SYNCHRONIZING WITH DATA (BUFFER/ACCESSOR)SYNCHRONIZING WITH DATA (BUFFER/ACCESSOR)

buf = sycl::buffer(data, sycl::range{1024});

gpuQueue.submit([&](sycl::handler &cgh){

 auto acc = sycl::accessor{buf, cgh};

	 	 	 	 	 	 	 	 	
 cgh.parallel_for<kernel_a>(sycl::range{1024},

[](l id 1 id){

12

SYNCHRONIZING WITH DATA (BUFFER/ACCESSOR)SYNCHRONIZING WITH DATA (BUFFER/ACCESSOR)
A buffer will also
synchronize the data it
manages on destruction.
It will wait for any kernel
functions accessing it to
complete and copy the
data back to the origin
address before
completing destruction.

{

 buf = sycl::buffer(data, sycl::range{1024});

 gpuQueue.submit([&](sycl::handler &cgh){

 auto acc = sycl::accessor{buf, cgh};

	 	 	 	 	 	 	 	 	
 cgh.parallel_for<kernel_a>(sycl::range{1024},

 [=](sycl::id<1> idx){

 acc[idx] = /* some computation */

 });

 });

}

	 	 	 	 	 	 	

13

SYNCHRONIZING WITH ERRORSSYNCHRONIZING WITH ERRORS
Errors are handled by a queue and any asynchronous errors can be produced during
any of the synchronization methods we've looked at.
The best way to ensure all errors are caught is to synchronize by calling wait or
wait_and_throw on the the queue.

14

QUESTIONSQUESTIONS

15

EXERCISEEXERCISE

Code_Exercises/Exercise_9_Synchronization/source

Try out the different methods of synchronizing with a kernel function and the resulting data
from the computation.

16

