€ SYCL Academy C
SYCL.

DATA AND DEPENDENCIES

€L SYCL Academy @CL
LEARNING OBJECTIVES

e Learn about how to create dependencies between

kernel functions

e Learn about how to move data between the host
and device(s)

e Learn about the differences between the
buffer/accessor and USM data management
models

e Learn how to represent basic data flow graphs

1111111111111111111

© SYCL Academy @CLW

ACCESS/BUFFER AND USM

There are two ways to move data and create dependencies between kernel functions in

SYCL
Buffer/accessor data movement model USM data movement model
e Data dependencies analysis e Manual chaining of dependencies
e |Implicit data movement e Explicit data movement

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

€. SYCL Academy

Kermnel A

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

GyeL

CREATING DEPENDENCIES

Kernel A first writes to the data

Kernel B then reads from and writes to
the data

This creates a read-after-write (RAW)
relationship

There must be a dependency created
between Kernel A and Kernel B

€. SYCL Academy

GPU

Kemel A

[Kemel B

._'L .

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

GyeL

MOVING DATA

Data

copy to GPU

!

Data

copy back to
host

!

Data

Here both kernel functions are
enqueued to the same device, in this
case a GPU

The data must be copied to the GPU
before the Kernel A is executed

The data must remain on the GPU for
Kernel B to be executed

The data must be copied back to the
host after Kernel B has executed

© SYCL Academy @CLW

DATA FLOW

o et l e Combining kernel function
. B dependencies and the data movement
T copy to GPU dependencies we have a final data flow
R e graph
J' 1 o => e This graph defines the order in which
- o all commands must execute in order to
[kemais [t - S—— maintain consistency
| | s SR * In more complex data flow graphs
o l there may be multiple orderings which

can achieve the same consistency

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc. B

© SYCL Academy @CLW

DATA FLOW WITH BUFFERS AND ACCESSORS

sycl::buffer buf {data, sycl::range{1024}};

gpuQueue.submit ([&] (sycl::handler &cgh) {

syelsiaceessor ace {buf, conls e The buffer/accessor data management
T eyl sTacts samy T Yorimensetinea model data model is descriptive
| eetidxl = /7 some computation ¥/ e Dependencies and data movement is
o inferred from the access requirements
e ace = buf.get accessiognys of command groups

cgh.parallel for<kernel b>(sycl::range{1024}, ¢ The SYCL runtime IS responSible for
e L L station +/ guaranteeing that data dependencies
e and consistency are maintained

gpuQueue.wait () ;

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

© SYCL Academy @CLW

DATA FLOW WITH BUFFERS AND ACCESSORS

sycl::buffer buf {data, sycl::range{1024}};

e Abuffer objectisresponsible for

gpuQueue.submit ([&] (sycl::handler &cgh) {

syeliraceessor ace (puf, cahly managing data between the host and
h.parallel for<kernel a>(l::range{1024}, .
S vl iTacts tamy T e one or more devices
| eetidxd = /7 some computation ¥/ e Itis also responsible for tracking
o dependencies on the data is manages

gpuQueue.submit ([&] (sycl::handler &cgh) {
auto acc = buf.get access(cgh);

e |t will also allocating memory and
cgh.parallel for<kernel b>(sycl::range{1024}, move data When necessary‘
[=] (sycl::id<1> idx) { M H
ree i S some computation +/ e Notethatabufferislazy and will not
o allocate or move data until it is asked

to

gpuQueue.wait () ;

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc. E

© SYCL Academy @CLW

DATA FLOW WITH BUFFERS AND ACCESSORS

sycl::buffer buf {data, sycl::range{1024}};

gpuQueue.submit ([&] (sycl::handler &cgh) {
sycl::accessor acc {buf, cgh};

cgh.parallel for<my kernel>(sycl::range{1024}, ¢ An accessor ObJeCt IS responSIble for
e L o patarion +/ describing data access requirements
o e Itdescribes what data a kernel function
SpuOueue . submit ((8] (syel: ihandler scgh) | is accessing and how it is accessing it

auto acc = buf.get access(cgh);

e The buffer object uses this
h.parallel for<my kernel>(l::range{1024}, . H .
S evelriTacts gwy (o oEEE information to create infer

acc[idx] = /* some computation */

D) ; dependencies and data movement
1)

gpuQueue.wait () ;

SYCL and the SYCL logo are trademarks of

the Khronos Group Inc. E

© SYCL Academy @CLW

DATA FLOW WITH BUFFERS AND ACCESSORS

buf = sycl::buffer(data, sycl::range{1024});

gpuQueue.submit ([&] (sycl::handler &cgh) {
sycl::accessor acc {buf, cgh};

cgh.parallel for<my kernel>(sycl::range{1024},

(=] (sycl::id<l> idx) { e Associating the accessor object with
| fectidxl = /7 some computation 7/ the handler connects the access
H dependency to the kernel function
e kg st i * Italso associates the access
cgh.parallel for<my kernel>(sycl::range{1024}, reqUirement with the device being
Tacelian] < /% some computation */ targeted

1)
1) ;

gpuQueue.wait () ;

SYCL and the SYCL logo are trademarks of

the Khronos Group Inc. m

© SYCL Academy @CLW

DATA FLOW WITH USM

auto devicePtr =
sycl::malloc device<int> (1024, gpuQueue);

e The USM data management model

auto el = gpuQueue.memcpy (devicePtr, data, sizeof (i1 data model |S prescrlptlve

ut 2 = uQueue.parallel for<kernel a> (. . . .

et irane (1094] ot (LT (eweliiacTe tax) | e Dependencies are defined explicitly by
})t;jev1ce]?tr[1dx] = /* some computation */ paSSing around event ObJeCtS

auto e3 = gpuQueue.parallel for<kernel b>(o Data movement IS performed eXp“Cltly

1l::range{1024}, e2, [=](1::1id<1> idx) { H 1

SyZevicZPEi[idx] = ?* some igriputation */ by enqueUIng memcpy Operat|0n5
Ve e The user is responsible for ensuring

Fute ef = gpnonene.memepy(dars, Ly, data dependencies and consistency are

ed.wait () ; maintained

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

€ SYCL Academy

SYCL.

DATA FLOW WITH USM

auto devicePtr =
sycl::malloc device<int> (1024, gpuQueue);

auto el = gpuQueue.memcpy (devicePtr, data, sizeof (i1 ° EaCh Command enqueued tO the
ut 2 = uQueue.parallel for<kernel a>(.
: s;ci: :ragze{laj}?aei, ?=]_(Zyc1?:iz<fi idx) { queue produces anevent ObJeCt

| devteetrliax] = /7 sone computation t/ which can be used to synchronize with
auto e3 = gpuQueue.parallel for<kernel Db> (the Completlon Of that Command

l::range{1024}, e2, [=](1::1d<1> idx) { . :

SyZevicZPEi[idx] = ?* some igriputation */ ¢ PaSS|ngthO$e event ObJeCtS When

o enqueueing other commands creates
auto e4d = gquueue.memcpy(Siizéf?izi)c?me:g;; dependenC|eS
ed.wait ()

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

€ SYCL Academy

SYCL.

DATA FLOW WITH USM

auto devicePtr =
sycl::malloc device<int> (1024, gpuQueue);

auto el = gpuQueue.memcpy (devicePtr, data, sizeof (i
auto e2 = gpuQueue.parallel for<kernel a>(

e L + The memcpy member functions are
o used to enqueue data movement
vclsirange 1024), o2, (o] (oyol::ia<T> idx) | commands, moving the data to the

})(;levice]?tr[idx] = /* some computation */ GPU and then back again

auto e4 = gpuQueue.memcpy (data, devicePtr,
sizeof (int), e3);

ed.wait () ;

SYCL and the SYCL logo are trademarks of

the Khronos Group Inc.

© SYCL Academy @CLW

CONCURRENT DATA FLOW

o |f two kernels are accessing different
buffers then there is no dependency

o /\ between them
oo | [e e In this case the two kernels and their
| | ' ' | | respective data movement are
B = e [independent
[N - L e By default queues are out-of-order
\ e LB o [which means that these commands
~_ can execute in any order

e They could also execute concurrently if
the target device is able to do so

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

€ SYCL Academy

GyeL

CONCURRENT DATA FLOW WITH BUFFERS AND
ACCESSORS

sycl::buffer bufA {dataA, sycl::range{l024}};
sycl::buffer bufB {dataB, sycl::range{l1024}};

gpuQueue.submit ([&] (sycl::handler &cgh) {
auto accA = bufA.get access(cgh);

cgh.parallel for<kernel a>(sycl::range{1024},
[=] (sycl::id<1> idx) {
accB[idx] = /* some computation */
1)
1)

gpuQueue.submit ([&] (sycl::handler &cgh) {
auto accB = bufB.get access(cgh);

cgh.parallel for<kernel b>(sycl::range{1024},
[=] (sycl::id<1> idx) {
accB[idx] = /* some computation */
1)
1)

gpuQueue.wait () ;

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

The buffer/accessor data management
model automatically infers
dependencies

As each of the two kernel functions are
accessing different buffer objects the
SYCL runtime can infer there is no
dependency between them

Data movement is still performed for
the two kernels as normal

The two kernels and their respective
copies collectively can be executed in
any order

€ SYCL Academy

SYCL.

CONCURRENT DATA FLOW WITH USM

auto devicePtrA = sycl::malloc device<int> (1024, gpuQueue);
auto devicePtrB sycl::malloc device<int> (1024, gpuQueue);

auto el = gpuQueue.memcpy (devicePtrA, dataA, sizeof (int));

auto e2 = gpuQueue.memcpy (devicePtrB, dataB, sizeof (int));

auto e3 = gpuQueue.parallel for<kernel a>(sycl::range{1024}, el, [=](sycl::1id<1> idx) {
devicePtrA[idx] = /* some computation */ });

auto e4 = gpuQueue.parallel for<kernel b>(sycl::range{1024}, e2, [=](sycl::1id<1> idx) {
devicePtrB[idx] = /* some computation */ });

auto e5 = gpuQueue.memcpy (datad), devicePtrA, sizeof (int), e3);

auto e6 = gpuQueue.memcpy (dataB, devicePtrB, sizeof (int), e4);

eS.wait (); eo6c.wait();

e Dependencies are defined explicitly
e We don't create dependencies between kernel functions but we do create
dependencies on the data movement

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc. m

€ SYCL Academy

SYCL.

CONCURRENT DATA FLOW WITH USM

auto devicePtrA = sycl::malloc device<int> (1024, gpuQueue);

auto devicePtrB = sycl::malloc device<int> (1024, gpuQueue);

auto el = gpuQueue.memcpy (devicePtrA, dataA, sizeof (int));

auto e2 = gpuQueue.memcpy (devicePtrB, dataB, sizeof (int));

auto e3 = gpuQueue.parallel for<kernel a>(sycl::range{1024}, el, [=](sycl::id<1> idx) {
devicePtrA[idx] = /* some computation */ });

auto e4 = gpuQueue.parallel for<kernel b>(sycl::range{1024}, e2, [=](sycl::1d<1> idx) {
devicePtrB[idx] = /* some computation */ });

auto e5 = gpuQueue.memcpy (datad), devicePtrA, sizeof (int), e3);

auto e6 = gpuQueue.memcpy (dataB, devicePtrB, sizeof (int), e4);

eb.wait(); e6.wait();

e The dependencies of each chain of commands is independant of the other
e The two kernels and their respective copies collectively can be executed in any order

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

© SYCL Academy @CLW

WHICH SHOULD YOU CHOOSE?

When should you use the buffer/accessor or USM data management models?

Buffer/accessor data movement model USM data movement model

e If you want to guarantee consistency

and avoid errors
e |f you want to iterate over your data

flow quicker

e |f you need to use USM
e |f you want more fine grained control
over data movement

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc. m

© SYCL Academy

logo are trademarks of

QUESTIONS

GyeL

© SYCL Academy

EXERCISE

GyeL

Code_Exercises/Exercise_10_Managing_Dependencies/source

. Kernel D 'ﬁ_

Data A

Data B

GPU
I: Kernel A H—
| KemelB "‘“ | KemelC F_ .

Data C

Data D

Put together what you've seen here to create the above diamond data flow graph in either
buffer/accessor or USM data management models

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

