€ SYCL Academy

logo are trademarks of

USING USM

GyeL



© SYCL Academy @CLW

LEARNING OBJECTIVES

e Learn how to allocate memory using USM

e Learn how to copy data to and from USM
allocated memory

e Learn how to access data from USM allocated
memory in a kernel function

e Learn how to free USM memory allocations
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FOCUS ON EXPLICIT USM

e Remember that there are different variants of USM; explicit, restricted, concurrent

and system.
e Remember also that there are different ways USM memory can be allocated; host,

device and shared.
e We're going to focus explicit USM and device allocations - this is the minimum

required variant.
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MALLOC_DEVICE

void* malloc device (size t numBytes, const queue& syclQueue, const property list &proplList = {});

template <typename T>
T* malloc _device(size t count, const queue& syclQueue, const property list &propList = {});

e A USM device allocation is performed by calling one of themalloc_device
functions.

e Both of these functions allocate the specified region of memory on the device
associated with the specified queue.

e The pointer returned is only accessible in a kernel function running on that device.

e Synchronous exception if the device does not have aspect::usm_device_allocations

e Thisis a blocking operation.
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FREE

void free(void* ptr, queue& syclQueue);

e In order to prevent memory leaks USM device allocations must be free by calling the

free function.
e The queue must be the same as was used to allocate the memory.

e Thisis a blocking operation.
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MEMCPY

event queue::memcpy(void* dest, const void* src, size t numBytes, const std::vector &depEvents);

e Data can be copied to and from a USM device allocation by calling the queue's
memcpy member function.

e The source and destination can be either a host application pointer or a USM device
allocation.

e Thisis an asynchronous operation enqueued to the queue.

e Anevent isreturned which can be used to synchronize with the completion of copy
operation.

e May depend on other events via depEvents
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MEMSET & FILL

event queue::memset (void* ptr, int value, size t numBytes, const std::vector &depEvents);

event queue::fill(void* ptr, const T& pattern, size t count, const std::vector &depEvents);

e The additional queue member functions memset and fill provide operations for
initializing the data of a USM device allocation.

e The member function memset initializes each byte of the data with the value
interpreted as an unsigned char.

e The member function fill initializes the data with a recurring pattern.

e These are also asynchronous operations.
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PUTTING IT ALL TOGETHER

int square number (int x) {
auto myQueue = sycl::queue{};
myQueue.submit ([&] (handler &cgh) {
cgh.single task<square number> ([=] () {
/* square some number */
1)
}) wait () ;

return x;

We start with a basic SYCL application which invokes a kernel function with single task.
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PUTTING IT ALL TOGETHER

int square number (int x) {
auto myQueue = sycl::queue{usm selector{}};

myQueue.submit ([&] (handler &cgh) {
cgh.single task<square number> (
/* square some number */
}) i
}) cwait () ;

(=10 {

return x;

}

We initialize the queue with the usm_selector we wrote in the last exercise, which will
choose a device which supports USM device allocations.
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SYCL.

PUTTING IT ALL TOGETHER

int square number (int x) {
auto myQueue = sycl::queue{usm selector{}};
auto devicePtr = malloc device<int>(l, myQueue) ;

myQueue.submit ([&] (handler &cgh) {
cgh.single task<square number> (
/* square some number */
IO
}) .wait () ;

(=10 {

return x;

We allocate USM device memory by callingmalloc_device. Here we use the template
variant and specify type int.
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SYCL.
PUTTING IT ALL TOGETHER

int square number (int x) {

auto myQueue = sycl::queue{usm selector{}};
auto devicePtr = malloc device<int>(l, myQueue);
myQueue.memcpy (devicePtr, &x, sizeof (int)) .wait();
myQueue.submit ([&] (handler &cgh) {

cgh.single task<square>([=] () {

/* square some number */

1)

}) wait ()

return x;

We copy the value of x in the host application to the USM device memory by calling memcpy
on myQueue. We immediately callwait on the returned event to synchronize with the
completion of the copy operation.
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SYCL.

PUTTING IT ALL TOGETHER

int square number (int x) {
auto myQueue = sycl::queue{usm selector{}};
auto devicePtr = malloc device<int>(l, myQueue) ;
myQueue.memcpy (devicePtr, &x, sizeof (int)) .wait();

myQueue.submit ([&] (handler &cgh) {

cgh.single task<square>([=] () {
*devicePtr = (*devicePtr) * (*devicePtr);
1)
}) swait () ;

return x;

We then pass the devicePtr directly to the kernel function and access it can then be
deferenced and the data written to.
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SYCL.
PUTTING IT ALL TOGETHER

int square number (int x) {
auto myQueue = sycl::queue{usm selector{}};
auto devicePtr = malloc device<int>(l, myQueue);
myQueue.memcpy (devicePtr, &x, sizeof (int)) .wait();

myQueue.submit ([&] (handler &cgh) {

cgh.single task<square>([=] () {
*devicePtr = (*devicePtr) * (*devicePtr);
1)
1) wait () ;

myQueue.memcpy (&x, devicePtr, sizeof (int)) .wait();

return x;

Finally we copy the result from USM device memory back to the variable x in the host
application by calling memcpy on myQueue.
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QUEUE SHORTCUTS

template <typename KernelName, typename KernelType>
event queue::single task(const KernelType &KernelFunc);

template <typename KernelName, typename KernelType, int Dims>
event queue::parallel for (range GlobalRange, const KernelType &KernelFunc);

e The queue provides shortcut member functions which allow you to invoke a
single taskoraparallel for withoutdefiningacommand group.
e These can only be used when using the USM data management model.
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WITH THE QUEUE SHORTCUT

int square number (int x) {
auto myQueue = sycl::queue{usm selector{}};
auto devicePtr = malloc device<int>(l, myQueue) ;
myQueue.memcpy (devicePtr, &x, sizeof (int)) .wait();

myQueue.single task<square> ([=] () {

*devicePtr = (*devicePtr) * (*devicePtr);
}) cwait () ;
myQueue.memcpy (&x, devicePtr, sizeof (int)) .wait();

return x;

If we use the queue shortcut here it reduces the complexity of the code.
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USM_WRAPPER COMPUTECPP ONLY

using namespace experimental ({

template <typename T>
class usm wrapper;

}

USM support in ComputeCpp is still experimental.

e You currently need to wrap USM pointersin a usm_wrapper to pass them to a kernel
function.

e Theusm_wrapper will behave like and convert to the raw pointer type.

This will be removed when ComputeCpp fully supports SYCL 2020.
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WITH THE USM_WRAPPER COMPUTECPP ONLY

int square number (int x) {
auto myQueue = sycl::queue{usm selector{}};

auto devicePtr = experimental::usm wrapper<int>(malloc device<int>(1l, myQueue));

myQueue.memcpy (devicePtr, &x, sizeof (int)) .wait();
myQueue.single task<square> ([=] () {
*devicePtr = (*devicePtr) * (*devicePtr);
1) wait () ;
myQueue.memcpy (&x, devicePtr, sizeof (int)).wait();

return x;

In ComputeCpp we wrap the result of malloc_device with ausm_wrapper soitcan be
passed to the kernel function.
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EXERCISE

Code_Exercises/Exercise_8 USM_Vector_Add/source

Implement the vector add from lesson 3 using the USM data management model.
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