
DATA PARALLELISMDATA PARALLELISM

1

LEARNING OBJECTIVESLEARNING OBJECTIVES
Learn about task parallelism and data parallelism
Learn about the SPMD model for describing data
parallelism
Learn about SYCL execution and memory models
Learn about enqueuing kernel functions with
parallel_for

2

TASK VS DATA PARALLELISMTASK VS DATA PARALLELISM

Task parallelism is where you have several,
possibly distinct tasks executing in
parallel.

In task parallelism you optimize for latency.
Data parallelism is where you have the same
task being performed on multiple
elements of data.

In data parallelism you optimize for throughput.

3

VECTOR PROCESSORSVECTOR PROCESSORS
Many processors are vector processors, which means
they can naturally perform data
parallelism.

GPUs are designed to be parallel.
CPUs have SIMD instructions which perform the
same instruction on a
number elements of data.

4

SPMD MODEL FOR DESCRIBING DATA PARALLELISMSPMD MODEL FOR DESCRIBING DATA PARALLELISM
Sequential CPU code
 Parallel SPMD code

void calc(int *in, int *out) {

 // all iterations are run in the same

 // thread in a loop

 for (int i = 0; i < 1024; i++){

 out[i] = in[i] * in[i];

 }

}

// calc is invoked just once and all

// iterations are performed inline

calc(in, out);

	 	 	 	 	 	 	

void calc(int *in, int *out, int id) {

 // function is described in terms of

 // a single iteration

 out[id] = in[id] * in[id];

}

// parallel_for invokes calc multiple

// times in parallel

parallel_for(calc, in, out, 1024);

	 	 	 	 	 	 	

5

SYCL EXECUTION MODELSYCL EXECUTION MODEL

In SYCL kernel functions are executed by work- items.
You can think of a work-item as a thread of execution.
Each work-item will execute a SYCL kernel function from start to end.
A work-item can run on CPU threads, SIMD lanes,
GPU threads, or any
other kind of processing
element.

6

SYCL EXECUTION MODELSYCL EXECUTION MODEL

Work-items are collected together into
work-groups
The size of work-groups is generally
relative to what is optimal on the
device being targeted
It can also be affected by the resources
used by each work-item

7

SYCL EXECUTION MODELSYCL EXECUTION MODEL

SYCL kernel functions are invoked
within an nd-range
An nd-range has a number of work-
groups and subsequently a number of
work-items
Work-groups always have the same
number of work-items

8

SYCL EXECUTION MODELSYCL EXECUTION MODEL

The nd-range describes an iteration
space; how the work-items and work-
groups are composed
An nd-range can be 1, 2 or 3
dimensions
An nd-range has two components

The global-range describes the
total number of workitems in
each dimension
The local-range describes the
number of work-items in a
work-group in each dimension

9

SYCL EXECUTION MODELSYCL EXECUTION MODEL
Multiple work-items will generally
execute concurrently
On vector hardware this is often done
in lock-step, which means the same
hardware instructions
The number of work-items that will
execute concurrently can vary from one
device to another
Work-items will be batched along with
other work-items in the same work-
group
The order work-items and workgroups
are executed in is implementation
defined

10

SYCL EXECUTION MODELSYCL EXECUTION MODEL

Work-items in a work-group can be
synchronized using a work-group
barrier

All work-items within a work-
group must reach the barrier
before any can continue on

11

SYCL EXECUTION MODELSYCL EXECUTION MODEL

SYCL does not support synchronizing
across all work-items in the nd-range
The only way to do this is to split the
computation into separate SYCL kernel
functions

12

SYCL MEMORY MODELSYCL MEMORY MODEL

Each work-item can access

a dedicated region of private
memory
a dedicated region of local
memory accessible to all
work-items in a work-group
a single region of global
memory that's accessible to
all work-items in a ND-range
a region of global memory
reserved as constant
memory, which is read-only

13

PARALLEL_FORPARALLEL_FOR

In SYCL kernel functions can be enqueued to execute over
a range of work-items
using parallel_for.
When using parallel_for you must also pass range
which describes the number
of iteration space to be
executed over.

cgh.parallel_for<my_kernel>(range{64, 64},

 [=](id<2> idx){
 // SYCL kernel function is executed

 // on a range of work-items

});

	 	 	 	 	 	 	

14

PARALLEL_FORPARALLEL_FOR

When using parallel_for you must also have the
function object which represents
the kernel function take
an id.
This represents the current work-item being executed and
its position within the
iteration space.

cgh.parallel_for<my_kernel>(range{64, 64},

 [=](id<2> idx){

 // SYCL kernel function is executed

 // on a range of work-items

});

	 	 	 	 	 	 	

15

EXPRESSING PARALLELISMEXPRESSING PARALLELISM
Overload taking a range object
specifies the global range, runtime
decides local range
An id parameter represents the index
within the global range

Overload taking a range object
specifies the global range, runtime
decides local range
An item parameter represents the
global range and the index within the
global range

Overload taking an nd_range object
specifies the global and local range
An nd_item parameter represents the
global and local range and index

	 	 	 	 	 	 	
cgh.parallel_for<kernel>(range<1>(1024),

 [=](id<1> idx){

 /* kernel function code */

});

	 	 	 	 	 	 	

	 	 	 	 	 	 	
cgh.parallel_for<kernel>(range<1>(1024),

 [=](item<1> item){

 /* kernel function code */

});

	 	 	 	 	 	 	

	 	 	 	 	 	 	
cgh.parallel_for<kernel>(nd_range<1>(range<1>(1024),
 range<1>(32)),[=](nd_item<1> ndItem){

 /* kernel function code */

});

	 	 	 	 	 	 	

16

QUESTIONSQUESTIONS

17

EXERCISEEXERCISE

Code_Exercises/Exercise_6_Vector_Add/source

Implement a SYCL application that adds two arrays of
values together in parallel using
parallel_for.

18

