
DEVICE DISCOVERYDEVICE DISCOVERY

1

LEARNING OBJECTIVESLEARNING OBJECTIVES
Learn about the SYCL system topology and how to
traverse it
Learn how to query information about a platform
or device
Learn how to select a device; both manually and
using device selectors

2

SYCL SYSTEM TOPOLOGYSYCL SYSTEM TOPOLOGY
A SYCL application can execute work across a range of different heterogeneous
devices.
The devices that are available in any given system are determined at runtime through
topology discovery.

3

PLATFORMS AND DEVICESPLATFORMS AND DEVICES
The SYCL runtime will discover a set of platforms that are available in the system.

Each platform represents a backend implementation such as Intel OpenCL or
Nvidia PTX.

The SYCL runtime will also discover all the devices available for each of those
platforms.

CPU, GPU, FPGA, and other kinds of accelerators.

4

HOST DEVICEHOST DEVICE
In SYCL there is also a host device which executes SYCL kernels as native C++.

The host device emulates the execution and memory model of a SYCL device.
This is very useful for debugging SYCL kernels.
There is only ever one host device and that device is associated with a host platform.

This is generally a CPU implementation.

5

PLATFORM AND DEVICE CLASSESPLATFORM AND DEVICE CLASSES
Platforms and devices are represented by the platform and device classes
respectively.
A default constructed platform object represents the host platform.
A default constructed device object represents the host device.

6

QUERYING THE TOPOLOGYQUERYING THE TOPOLOGY

In SYCL there are two ways to query a system’s
topology.

The topology can be manually queried and
iterated over via APIs of the platform and
device classes .
The topology can be automatically queried
and iterated over using a use specified
heuristic by a device selector object.

7

QUERYING MANUALLYQUERYING MANUALLY

The platform class provides the static function
get_platforms.

It retrieves a vector of all available platforms
in the system.

This includes the host platform.

auto platforms = platform::get_platforms();

	 	 	 	 	 	 	

8

QUERYING MANUALLYQUERYING MANUALLY

The platform class provides the member function
get_devices that returns a vector of all devices
associated with that platform.
This includes the host device if the platform
object represents a host platform.

auto intelDevices = intelPlatform.get_devices();

	 	 	 	 	 	 	

9

QUERYING MANUALLYQUERYING MANUALLY

The device class also provides the static
function
get_devices that returns a vector of all
available devices in the system.
This includes the host device.

auto devices = device::get_devices();

	 	 	 	 	 	 	

10

QUERYING WITH A DEVICE SELECTORQUERYING WITH A DEVICE SELECTOR
To simplify the process of traversing
the system topology SYCL provides
device selectors.
A device selector is is a C++ function
object, derived from the
device_selector class, which
defines a heuristic for scoring devices.
SYCL provides a number of standard
device selectors, e.g.
default_selector_v,
gpu_selector_v, etc.
Users can also create their own device
selectors.

11

QUERYING WITH A DEVICE SELECTORQUERYING WITH A DEVICE SELECTOR

The device_selector class provides the member function select_device.
Queries all devices and returns the one with the highest "score".
A device with a negative score will never be chosen.

auto gpuDevice = gpu_selector_v.select_device();

	 	 	 	 	 	 	

12

QUERYING THE TOPOLOGY USING A DEVICEQUERYING THE TOPOLOGY USING A DEVICE
SELECTORSELECTOR

The default_selector_v is a standard device selector type.
Chooses a device based on an implementation defined heuristic.

auto chosenDevice = default_selector_v.select_device
	 	 	 	 	 	 	

13

CREATING A CUSTOM DEVICE SELECTORCREATING A CUSTOM DEVICE SELECTOR

A device selector must inherit from the
device_selector class.

In SYCL 2020 it can be any callable object.
A device selector must have a function call
operator which takes a reference to a device.

struct my_gpu_selector : public device_selector {

 int operator()(const device& dev) const override {

 }

};

	 	 	 	 	 	

14

CREATING A CUSTOM DEVICE SELECTORCREATING A CUSTOM DEVICE SELECTOR

The body of the function call operator defines the
heuristic for selecting devices
This is where you write the logic for scoring each
device

struct my_gpu_selector : public device_selector {

 int operator()(const device& dev) const override {

 if (dev.is_gpu()){

 return 1;

 }

 else {

 return -1;

 }

 }

};

	 	 	 	 	 	

15

CREATING A CUSTOM DEVICE SELECTORCREATING A CUSTOM DEVICE SELECTOR

Now that there is a device selector that chooses a
specific device we can use that to construct a
queue.

struct my_gpu_selector : public device_selector {

 int operator()(const device& dev) const override {

 if (dev.is_gpu()){

 return 1;

 }

 else {

 return -1;

 }

 }

};

int main(int argc, char *argv[]) {

 auto gpuQueue = queue{my_gpu_selector};

}

	 	 	 	 	 	

16

PLATFORM/DEVICE INFOPLATFORM/DEVICE INFO

Information about platforms and devices can be queried using the template member
function get_info.
The info that you are querying is specified by the template parameter.
You can also query a device for its associated platform with the get_platform
member function.

auto plt = dev.get_platform();

auto platformName

 = dev.get_info<info::device::name>();

	 	 	 	 	 	 	

17

ASPECTSASPECTS
Capabilities of a device or platform are
represented by aspects.
These can be queried via the has
member
function.

bool supportsFp16 = dev.has(aspect::fp16);

	 	 	 	 	 	 	

18

QUESTIONSQUESTIONS

19

EXERCISEEXERCISE

Code_Exercises/Exercise_5_Device_Selection/source

Create your own device selector that chooses the device in your system that you would like
to target.

20

