
ENQUEUING A KERNELENQUEUING A KERNEL

1

LEARNING OBJECTIVESLEARNING OBJECTIVES
Learn about queues and how to submit work to
them
Learn how to compose command groups
Learn how to define kernel functions
Learn about the rules and restrictions on kernel
functions
Learn how to stream text from a kernel function to
the console.

2

THE QUEUETHE QUEUE
In SYCL all work is submitted via commands to a queue.
The queue has an associated device that any commands enqueued to it will target.
There are several different ways to construct a queue.
The most straight forward is to default construct one.
This will have the SYCL runtime choose a device for you.

3

PRECURSORPRECURSOR
In SYCL there are two models for managing data:

The buffer/accessor model.
The USM model.

Which model you choose can have an effect on how you enqueue kernel functions.
For now we are going to focus on the buffer/accessor model.

4

COMMAND GROUPSCOMMAND GROUPS

In the buffer/accessor model
commands must be enqueued via
command groups.
A command group represents a series
of commands to be executed by a
device.
These commands include:

Invoking kernel functions on a
device.
Copying data to and from a
device.
Waiting on other commands to
complete.

5

COMPOSING COMMAND GROUPSCOMPOSING COMMAND GROUPS

Command groups are composed by
calling the submit member function
on a queue.
The submit function takes a command
group function which acts as a factory
for composing the command group.
The submit function creates a
handler and passes it into the
command group function.
The handler then composes the
command group.

6

COMPOSING COMMAND GROUPSCOMPOSING COMMAND GROUPS
The submit member function takes a
C++ function object, which takes a
reference to a handler.
The function object can be a lambda
expression or a class with a function
call operator.
The body of the function object
represents the command group
function.

gpuQueue.submit([&](handler &cgh){

 /* Command group function */

});

	 	 	 	 	 	 	

7

COMPOSING COMMAND GROUPSCOMPOSING COMMAND GROUPS
The command group function is
processed exactly once when submit
is called.
At this point all the commands and
requirements declared inside the
command group function are
processed to produce a command
group.
The command group is then submitted
asynchronously to the scheduler.

gpuQueue.submit([&](handler &cgh){

 /* Command group function */

});

	 	 	 	 	 	 	

8

COMPOSING COMMAND GROUPSCOMPOSING COMMAND GROUPS
The queue will not wait for commands
to complete on destruction.
However submit returns an event to
allow you to synchronize with the
completion of the commands.
Here we call wait on the event to
immediately wait for it complete.
There are other ways to do this, that
will be covered in later lectures.

gpuQueue.submit([&](handler &cgh){

 /* Command group function */

}).wait();

	 	 	 	 	 	 	

9

SCHEDULINGSCHEDULING

Once submit has created a command group it will submit it to the scheduler.
The scheduler will then execute the commands on the target device
once all
dependencies and requirements are satisfied.

10

SCHEDULINGSCHEDULING

The same scheduler is used for all queues.
This allows sharing dependency information.

11

ENQUEUING SYCL KERNEL FUNCTIONSENQUEUING SYCL KERNEL FUNCTIONS
SYCL kernel functions are defined using
one of the kernel function invoke APIs
provided by the handler.
These add a SYCL kernel function
command to the command group.
There can only be one SYCL kernel
function command in a command
group.
Here we use single_task.

class my_kernel;

gpuQueue.submit([&](handler &cgh){

 cgh.single_task<my_kernel>([=]() {

 /* kernel code */

 });

}).wait();

	 	 	 	 	 	 	

12

The kernel function invoke APIs
take a function object
representing the kernel function.
This can be a lambda expression
or a class with a function call
operator.
This is the entry point to the code
that is compiled to execute on
the device.

class my_kernel;

gpuQueue.submit([&](handler &cgh){

	 	 	 	 	 	 	 	
 cgh.single_task<my_kernel>([=]() {

 /* kernel code */

 });

}).wait();

	 	 	 	 	 	 	

13

Different kernel invoke APIs take
different parameters describing
the iteration space to be invoked
in.
Different kernel invoke APIs can
also expect different arguments
to be passed to the function
object.
The single_task function
describes a kernel function that
is invoked exactly once, so there
are no additional parameters or
arguments.

class my_kernel;

gpuQueue.submit([&](handler &cgh){

	 	 	 	 	 	 	 	
 cgh.single_task<my_kernel>([=]() {

 /* kernel code */

 });

}).wait();

	 	 	 	 	 	 	

14

The template parameter passed
to single_task is used to name
the kernel function.
This is necessary when defining
kernel functions with lambdas to
allow the host and device
compilers to communicate.
SYCL 2020 allows kernel lambdas
to be unnamed, but not all
implementations support that
yet.

class my_kernel;

gpuQueue.submit([&](handler &cgh){

	 	 	 	 	 	 	 	
 cgh.single_task<my_kernel>([=]() {

 /* kernel code */

 });
}).wait();

	 	 	 	 	 	 	

15

SYCL KERNEL FUNCTION RULESSYCL KERNEL FUNCTION RULES
Must be defined using a C++ lambda or function object, they cannot be a function
pointer or std::function.
Must always capture or store members by-value.
SYCL kernel functions declared with a lambda must be named using a forward
declarable C++ type, declared in global scope.
SYCL kernel function names follow C++ ODR rules, which means you cannot have two
kernels with the same name.

16

SYCL KERNEL FUNCTION RESTRICTIONSSYCL KERNEL FUNCTION RESTRICTIONS
No dynamic allocation
No dynamic polymorphism
No function pointers
No recursion

17

KERNELS AS FUNCTION OBJECTSKERNELS AS FUNCTION OBJECTS

All the examples of SYCL kernel
functions up until now have been
defined using lambda expressions.

class my_kernel;

queue gpuQueue;

gpuQueue.submit([&](handler &cgh){

 cgh.single_task<my_kernel>([=]() {

 /* kernel code */

 });

}).wait();

	 	 	 	 	 	 	

18

KERNELS AS FUNCTION OBJECTSKERNELS AS FUNCTION OBJECTS
As well as defining SYCL kernels using
lambda expressions,
You can also
define a SYCL kernel using a regular
C++ function object.

struct my_kernel {

 void operator()(){

 /* kernel function */

 }

};

	 	 	 	 	 	 	

19

KERNELS AS FUNCTION OBJECTSKERNELS AS FUNCTION OBJECTS

To use a C++ function object you
simply construct an instance of
the type and pass it to
single_task.
Notice you no longer need to
name the SYCL kernel.

struct my_kernel {

 void operator()(){

 /* kernel function */

 }

};

	 	 	 	 	 	 	

queue gpuQueue;

gpuQueue.submit([&](handler &cgh){

	 	 	 	 	 	 	 	
 cgh.single_task(my_kernel{});

}).wait();

	 	 	 	 	 	 	

20

STREAMSSTREAMS
A stream can be used in a kernel function to print text to the console from the
device, similarly to how you would with std::cout.
The stream is a buffered output stream so the output may not appear until the
kernel function is complete.
The stream is useful for debugging, but should not be relied on in performance
critical code.

21

STREAMSSTREAMS

A stream must be constructed in the command group function, as a handler is
required.
The constructor also takes a size_t parameter specifying the total size of the buffer
that will store the text.
It also takes a second size_t parameter specifying the work-item buffer size.
The work-item buffer size represents the cache that each invocation of the kernel
function (in the case of single_task 1) has for composing a stream of text.

stream::stream(size_t bufferSize, size_t workItemBufferSize, handler &cgh);

	 	 	 	 	 	

22

STREAMSSTREAMS

Here we construct a stream in our
command group function with a buffer
size of 1024 and a work-item size of
128.
This means that the total text that the
stream can receive is 1024 bytes.

class my_kernel;

queue gpuQueue;

gpuQueue.submit([&](handler &cgh){

 auto os = sycl::stream(1024, 128, cgh);

 cgh.single_task<my_kernel>([=]() {

 /* kernel code */

 });

}).wait();

	 	 	 	 	 	 	

23

STREAMSSTREAMS
Next we capture the stream in the
kernel function's lambda expression.
Then we can print "Hello World!" to
the console using the << operator.
This is where the work-item size comes
in, this is the cache available to store
text on the right-hand-size of the <<
operator.

class my_kernel;

queue gpuQueue;

gpuQueue.submit([&](handler &cgh){

 auto os = sycl::stream(1024, 128, cgh);

 cgh.single_task<my_kernel>([=]() {

 os << "Hello world!\n";

 });

}).wait();

	 	 	 	 	 	 	

24

QUESTIONSQUESTIONS

25

EXERCISEEXERCISE

Code_Exercises/Exercise_2_Hello_World/source

Implement a SYCL application which enqueues a kernel function to a device and streams
"Hello world!" to the console.

26

