
MANAGING DATAMANAGING DATA

1

LEARNING OBJECTIVESLEARNING OBJECTIVES
Learn about the buffer/accessor model for
managing data
Learn how to use buffers and accessors
Learn how to access data in a kernel function
Learn how a buffer synchronizes data

2

SYCL BUFFERS & ACCESSORSSYCL BUFFERS & ACCESSORS
SYCL separates the storage and access of data

A SYCL buffer manages data across the host and any number of devices
A SYCL accessor requests access to data on the host or on a device for a
specific SYCL kernel function

Accessors are also used to access data within a SYCL kernel function
This means they are declared in the host code but captured by and then
accessed within a SYCL kernel function

3

SYCL BUFFERS & ACCESSORSSYCL BUFFERS & ACCESSORS
A SYCL buffer can be constructed with a
pointer to host memory
For the lifetime of the buffer this
memory is owned by the SYCL runtime
When a buffer object is constructed it
will not allocate or copy to device
memory at first
This will only happen once the SYCL
runtime knows the data needs to be
accessed and where it needs to be
accessed

4

SYCL BUFFERS & ACCESSORSSYCL BUFFERS & ACCESSORS

Constructing an accessor specifies a
request to access the data managed by
the buffer
There are a range of different types of
accessor which provide different ways
to access data

5

SYCL BUFFERS & ACCESSORSSYCL BUFFERS & ACCESSORS

When an accessor is constructed it is
associated with a command group via
the handler object
This connects the buffer that is being
accessed, the way in which it’s being
accessed and the device that the
command group is being submitted to

6

SYCL BUFFERS & ACCESSORSSYCL BUFFERS & ACCESSORS
Once the SYCL scheduler selects the
command group to be executed it must
first satisfy its data dependencies
This means allocating and copying
data to the device the data is being
accessed on if necessary
If the most recent copy of the data is
already on the device then the runtime
will not copy again

7

SYCL BUFFERS & ACCESSORSSYCL BUFFERS & ACCESSORS
Data will remain in device memory
a�er kernels finish executing until
another command group requests
access in a different device or on the
host
When the buffer object is destroyed it
will wait for any outstanding work that
is accessing the data to complete and
then copy back to the original host
memory

8

BUFFER CLASSBUFFER CLASS

A buffer manages data across the host application and kernel functions executing
on device(s).
It has a typename which specifies the type of the elements of data it manages.
It has a dimensionality which specifies the dimensionality that the elements of data
are represented in.

template <typename dataT, int dimensions>
sycl::buffer;

9

CONSTRUCTING A BUFFERCONSTRUCTING A BUFFER

A buffer can be constructed from a pointer to data for it to manage and a range
which describes the number of elements of data.
Using CTAD the type and the dimensionality can be inferred.

int var = 42;
auto buf = sycl::buffer{&var, sycl::range{1}};

10

ACCESSOR CLASSACCESSOR CLASS

11

ACCESSOR CLASSACCESSOR CLASS
There are many different ways to use the accessor class.

Accessing data on a device.
Accessing data immediately in the host application.
Allocating local memory.

For now we are going to focus on accessing data on a device.

12

CONSTRUCTING AN ACCESSORCONSTRUCTING AN ACCESSOR

There are many ways to construct an accessor.
The accessor class supports CTAD so it's not nessesary to specify all of the template
arguments.
The most common way to construct an accessor is from a buffer and a handler
associated with the command group function you are within.

The element type and dimensionality are infered from the buffer.
The access::target is defaulted to access::target::global_buffer.
The access::mode is defaulted to access::mode::read_write.

auto acc = sycl::accessor{bufA, cgh};

13

SPECIFYING THE ACCESS MODESPECIFYING THE ACCESS MODE

When constructing an accessor you will likely also want to specify the
access::mode
You can do this by passing one of the CTAD tags:

read_only will result in access::mode::read.
write_only will result in access::mode::write.

auto readAcc = sycl::accessor{bufA, cgh, sycl::read_only};
auto writeAcc = sycl::accessor{bufB, cgh, sycl::write_only};

14

SPECIFYING NO INITIALIZATIONSPECIFYING NO INITIALIZATION

When constructing an accessor you may also want to discard the original data of a
buffer.
You can do this by passing the no_init property.

auto acc = sycl::accessor{buf, cgh, sycl::no_init};

15

ACCESS MODESACCESS MODES
A read accessor instructs the SYCL runtime that the SYCL kernel function will read
the data – cannot be written to within a SYCL kernel function.
A write accessor instructs the SYCL runtime that the SYCL kernel function will
modify the data – creating a dependency for future command groups.
A no_init accessor instructs the SYCL runtime that the SYCL kernel function does
not need the initial values of the data – removing the dependency on previous
command groups.

16

ACCESSOR RESOLUTIONACCESSOR RESOLUTION
If a command group has more than one accessor to the same buffer with
conflicting access::mode they are resolved into one:

read & write => read_write.
If a command group has more than one accessor to the same buffer all must have
the no_init property for it to apply.
Within the SYCL kernel function there are still multiple accessors, but they alias to
the same memory address.

17

ACCESSOR RESOLUTIONACCESSOR RESOLUTION
Here in and out both point to
buf but one is
access::mode::read and
one is access::mode::write.
So the SYCL runtime will treat
them both as
access::mode::read_write.
Both will point to a single
allocation of global memory on
the device(s).
The runtime will resolve the
data dependency into
access::mode::read_write.

gpuQueue.submit([&](handler &cgh){
 auto in = sycl::accessor{buf, cgh, sycl::read_only};
 auto out = sycl::accessor{buf, cgh, sycl::write_only};
});

18

OPERATOR[]OPERATOR[]

As well as specifying data dependencies an accessor can also be used to access the
data from within a kernel function.
You can do this by calling operator[] on the accessor.

This operator can take an id or a size_t.

gpuQueue.submit([&](handler &cgh){
 auto inA = sycl::accessor{bufA, cgh, sycl::read_only};
 auto inB = sycl::accessor{bufB, cgh, sycl::read_only};
 auto inO = sycl::accessor{bufO, cgh, sycl::write_only};
 cgh.single_task<add>([=]{
 out[0] = inA[0] + inB[0];
 });
});

19

QUESTIONSQUESTIONS

20

EXERCISEEXERCISE

Code_Exercises/Exercise_3_Scalar_Add/source

Implement a SYCL application that adds two variables and returns the result.

21

