© SYCL Academy @CLW

HANDLING ERRORS AND
DEBUGGING

© SYCL Academy @CLW

LEARNING OBJECTIVES

e Learn about how SYCL handles errors

e Learn about the difference between synchronous
and asynchronous exceptions

e Learn how to handle exceptions and retrieve
further information

e Learn about the host device and how to use it

1111111111111111111

© SYCL Academy @CLW

SYCL EXCEPTIONS

e In SYCL errors are handled by throwing
exceptions.

e |tiscrucial that these errors are handled,
otherwise your application could fail in
unpredictable ways.

e In SYCL there are two kinds of error:

= Synchronous errors (thrown in user thread) .
= Asynchronous errors (thrown by the SYCL
~scheduler).

1111111111111111111

€ SYCL Academy

SYCL.
SYCL EXCEPTIONS

Synchronous .
SYCL interface

SYCL Runtime

Asynchronous
exceptions ||

Kernel Runtime Data dependency
loader Scheduler

tracker

Host device

Backend interface (e.g. OpenCL API)

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

€. SYCL Academy

HANDLING ERRORS

class add;

int main () {
std::vector<float> da{ 7, 5, 1le6, 8 }, dB{ 8, 16, 5, 7 }, do{ 0O, 0, 0, O
queue gpuQueue (gpu_selector{});
buffer bufA{dA};
buffer bufB{dB};
buffer bufO{do};

gpuQueue.submit ([&] (handler &cgh) {

auto inA = accessor{bufA, cgh, read only};
auto inB = accessor{bufB, cgh, read only};
auto out = accessor{bufO, cgh, write only};
cgh.single task<add> (bufO.get range(), [=] (1d<1> 1) {
out[1] = 1inA[i] + inB[i];
1)
}) .wait () ;

e If errors are not handled, the application can fail:
= SYCL 1.2.1 application will fail silently.
m SYCL 2020 provides a default async handler that will call std
asynchronous error is thrown.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

SYCL.

}s

: :terminate when an

€ SYCL Academy

SYCL.

class add;

int main () {
std::vector<float> da{ 7, 5, 16, 8 }, dB{ 8, 16, 5, 7 }, do{ 0O, 0O, 0, O };
try {

queue gpuQueue (gpu_selector{});

buffer bufA{dA};
buffer bufB{dB};
buffer bufO{do};

gpuQueue.submit ([&] (handler &cgh) {
auto inA = accessor{bufA, cgh, read only};
auto inB = accessor{bufB, cgh, read only};

auto out = accessor{bufO, cgh, write only};
cgh.single task<add> (bufO.get range(), [=] (1d<1> 1) {
out[1] = 1inA[i] + inB[i];
1)
1) wait () ;
} catch (...) { /* handle errors */ }

e Synchronous errors are typically thrown by SYCL API functions.
e In order to handle all SYCL errors you must wrap everything in a try-catch block.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc. B

€. SYCL Academy

SYCL

class add;

int main () {
std: :vector<float> dA{ 7, 5, 16, 8 }, dB{ 8, 16, 5, 7 }, do{ 0, 0, 0, O };
try{

queue gpuQueue (gpu_ selector{}, async handler{});

buffer bufA{dA};
buffer bufB{dB};
buffer bufO{do};

gpuQueue.submit ([&] (handler &cgh) {
auto inA = accessor{bufA, cgh, read only};
auto inB accessor{bufB, cgh, read only};

auto out accessor{bufO, cgh, write only};
cgh.single task<add>(bufO.get range(), [=] (id<1> i) {
out[1] = inA[i] + inB[i];
1)
}) cwait () ;

gpuQueue.throw asynchronous() ;
} catch (...) { /* handle errors */
}

e Asynchronous errors errors that may have occurred will be thrown after a command group has been
submitted to a queue.
= To handle these errors you must provide an async handler when constructing the queue
object.
e Thenyou must also call the throw_asynchronous orwait and_throw member functions of the
queue class.

.

- Thki~--ill ~3g55 the exceptions to the async handler in the user thread so they can be thrown.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

™

€ SYCL Academy
SYCL.

class add;

int main() {
std::vector<float> da{ 7, 5, 1le, 8 }, dB{ 8, 16, 5, 7 }, do{ 0, 0, 0, O };
try{
queue gpuQueue (gpu_selector{}, [=] (exception list elL) {

for (auto e : elL) { std::rethrow exception(e); }

1) ;

buffer bufA{dA};
buffer bufB{dB};
buffer bufO{do};

gpuQueue.submit ([&] (handler &cgh) {
auto inA = accessor{bufA, cgh, read only};

auto inB = accessor{bufB, cgh, read only};

auto out = accessor{bufO, cgh, write only};
cgh.single task<add> (bufO.get range (), [=] (1d<1> 1) {
out[i] = inA[i] + 1inB[i];
1)
1) .wait () ;

gpuQueue.throw asynchronous();
} catch (...) { /* handle errors */ }

e The async handleris a C++ lambda or function object that takes as a parameter an exception_list
e The exception_list class is a wrapper around a list of exception_ptrs which can be iterated over
e The exception_ptrs can be rethrown by passing them to std: :rethrow_exception

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

© SYCL Academy
SYCL.

int main () {
std::vector<float> daA{ 7, 5, 16, 8 }, dB{ 8, 16, 5, 7 }, do{ 0, 0O, 0O, O };

try {
queue gpuQueue (gpu_selector{}, [=] (exception list eL) {
for (auto e : elL) { std::rethrow exception(e); }

) :

gpuQueue.throw asynchronous();
} catch (const std::exceptioné& e) {
std::cout << “Exception caught: ” << e.what ()
<< std::endl;

e Once rethrown and caught, a SYCL exception can provide information about the error
e Thewhat member function will return a string with more details

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

€ SYCL Academy

int main () {
std::vector<float> dA{ 7, 5, 16, 8 }, dB{ 8, 16, 5, 7 }, do{ 0, 0O, O,
try {
queue gpuQueue (gpu_selector{}, [=] (exception list eL) {
for (auto e : elL) { std::rethrow exception(e); }

1) ;

gpuQueue.throw asynchronous();
} catch (const sycl::exceptioné& e) {
std::cout << “Exception caught: ” << e.what();
std:: cout << ™ With OpenCL error code: ”
<< e.get cl code() << std::endl;
t
t

0

b

SYCL.

e InSYCL 1.2.1, if the exception has an OpenCL error code associated with it this can be retrieved by

callingthe get_cl code member function
e Ifthereis no OpenCL error code this will return CL_SUCCESS

e SYCL 2020 provides the error_category for templated free function that allows checking for the

category of the exception depending on the backend used (e.g. backend: :opencl), and

e.code().value() will correspond to the backend error code.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

© SYCL Academy

SYCL.

int main () {
std::vector<float> daA{ 7, 5, 16, 8 }, dB{ 8, 16, 5, 7 }, do{ 0, 0O, 0O, O };

queue gpuQueue (gpu_selector{}, [=] (exception list eL) {
for (auto e : elL) { std::rethrow exception(e); }
1) ;

context gpuContext = gpuQueue.get context();
try {

gpuQueue.wait and throw();
} catch (const sycl::exceptioné& e) {
if (e.has context()) {
if (e.get context() == gpuContext) ({
/* handle error */
t
t
t
t

e The has_context member function will tell you if there is a SYCL context associated with the error

e |fthat returns true then the get context member function will return the associated SYCL context
object

SYCL and the SYCL logo are trademarks of

the Khronos Group Inc.

€ SYCL Academy

EXCEPTION TYPES

GyeL

© SYCL Academy @CLW

e In SYCL 1.2.1 there are a number of different
exception types that inherit from
std: :exception
= E.g. runtime_error, kernel_error
e SYCL 2020 only has asingle sycl: :exception
type which provides different error codes
= E.g.errc::runtime, errc: :kernel

mmmmmmmmmmmmmmmmmm

© SYCL Academy @CLW

DEBUGGING SYCL KERNEL
FUNCTIONS

© SYCL Academy @CLW

e Every SYCL 1.2.1 implementation is required to
provide a host device
= This device executes native C++ code but is
guaranteed to emulate the SYCL execution
and memory model
e This means you can debug a SYCL kernel function
by switching to the host device and using a
standard C++ debugger
= Forexample gdb

1111111111111111111

© SYCL Academy @CLW

e SYCL 2020 only guarantees that a device will
always be available, and users can query the
host debuggable device aspect to check
whether they can use the same functionality as
the SYCL 1.2.1 host device

€ SYCL Academy

SYCL.

class add;

int main() {
std::vector<float> da{ 7, 5, 16, 8 }, dB{ 8, 16, 5, 7 }, 4do{ 0, 0, 0, O }:
try{

queue hostQueue (aspect selector<aspect::host debuggable> (), async handler{});

buffer bufA{dA};
buffer bufB{dB};
buffer bufO{do};

hostQueue.submit ([&] (handler &cgh) {
auto inA = accessor{bufA, cgh, read only};
auto inB = accessor{bufB, cgh, read only};

auto out accessor{bufO, cgh, write only};
cgh.single task<add> (bufO.get range (), [=] (1d<1> 1) {
out[1] = 1inA[i] + inB[i];

)
1)
hostQueue.wait and throw();
} catch (...) { /* handle errors */ }
}

e Any SYCL application can be debugged on the host device by switching the queue for a host queue

e Replacing the device selector for the aspect_selector will ensure that the queue submits all work to
the device with the requested aspects, in this case a host debuggable device

e InSYCL 1.2.1,host_selector would be used instead, deprecated in SYCL 2020

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

€ SYCL Academy

logo are trademarks of

QUESTIONS

GyeL

@ SYCLAcademy @C L -

EXERCISE

Code_Exercises/Exercise_4_Handling_Errors/source

Add error handling to a SYCL application for both synchronous and asynchronous errors.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

