© SYCL Academy @CLW

ASYNCHRONOUS EXECUTION

© SYCL Academy @CLW

LEARNING OBJECTIVES

e Learn about how commands are enqueued

asynchronously
e Learn about the different reasons for

synchronization
e Learn about the different ways to perform

synchronization

1111111111111111111

€ SYCL Academy C
SYCL.

ASYNCHRONOUS EXECUTION

All command submitted to a queue are done so asynchronously.

The functions return immediately and the command is run in a background thread.
This includes individual commands like memcpy and collections of commands
derived from a command group.

e This means you have to synchronize with those commands.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

© SYCL Academy @CLW

SYNCHRONIZATION

There are a number of reasons why you need to synchronize with commands

e Await completion of a kernel function.
e Await the results of a computation.
e Await error conditions which come from a failure to execute any of the commands.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

© SYCL Academy @CLW

SYNCHRONIZATION WITH KERNEL FUNCTIONS

There are two ways ways to synchronize with kernel functions.

e Callingwait on anevent object returned from enqueuing a kernel function
command, either via a command group or a shortcut function.
e Callingwait orwait_and_throw on the queue itself.

SYCL and the SYCL logo are t
the Khronos Group Inc.

© SYCL Academy @CLW

SYNCHRONIZING WITH KERNEL FUNCTIONS
(BUFFERS/ACCESSORS)

e Callingwait onanevent object
returned from enqueuing a command
group will wait for the commands from

buf = sycl::buffer(data, sycl::range{1024});

gpuQueue.submit ([&] (sycl::handler &cgh) {

auto acc = sycl::accessor(buf, cgh); that command group to complete.
cgh.parallel for<kernel a>(sycl::range(1024}, e Thisis how we have synchronized in
;Zi (rem] 27 some computation */ our examples so far.
) O e This effectively creates a blocking

operations that will complete in place
by immediately synchronizing.

SYCL and the SYCL logo are
the Khronos Group Inc.

© SYCL Academy @CLW

SYNCHRONIZING WITH KERNEL FUNCTIONS
(BUFFERS/ACCESSORS)

buf = sycl::buffer(data, sycl::range{1024});

e Callingwaitorwait _and throwona

gpuQueue.submit ([&] (sycl::handler &cgh) {

auto acc = sycl::accessor{buf, cgh}; queue will wait for all commands
cgh.parallel_for<kernel_a>(sycl::range (1024}, enqueued to it to com plete.
})%EiEiii]l:ilfilioileémputation v e Note that command groups do not
b i create commands to copy data back to
gpuQueue . wait () ; the host application.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

© SYCL Academy @CLW

SYNCHRONIZING WITH KERNEL FUNCTIONS (USM)

e Callingwait onanevent object
uto devicePtr = usm wr r<int> (.
Y lloe fovisecinte (1024, onoueue)) returned from functions such as
memcpy or the queue shortcuts will
wait for that specific command to

gpuQueue.memcpy (devicePtr, data, sizeof (int)) .wait(

gpuQueue.parallel for<kernel a>(sycl::range{l1024},

[=1(1::1id<1> idx) {
deviizgtr[idx] = /* some computation */ Complete’
Hewaie s e Again this is how we have synchronized

in our examples so far.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc. E

© SYCL Academy @CLW

SYNCHRONIZING WITH KERNEL FUNCTIONS (USM)

e Again callingwait or

e o e cecinte (100, oo) wait_and_throwon a queue will wait
gpuQueue.memcpy (devicePtr, data, sizeof (int)); for a“ Commands enqueued to |t tO
gpuQueue.wait () ; Complete.

gpuQueue.parallel for<kernel a>(sycl::range{l1024},

e Note you generally don't want to call
el o Tio0 | e wait on the queue after every
H command, instead you want to create
e e dependencies between commands,
which we cover in the next lecture.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc. n

© SYCL Academy @CLW

SYNCHRONIZING WITH DATA

There are multiple ways ways to synchronize with data, but it differs depending on the data
management model you are using.

e When using the USM data management model you can synchronize the same way
you would for kernel functions, callingwait on an event or the queue.
e When using the buffer/access data management model command groups don't
automatically copy data back so there are other ways to synchronize with the data.
= Creatingahost_accessor.
= Destroying the buffer.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc. m

© SYCL Academy @CLW

SYNCHRONIZING WITH DATA (USM)

gpuQueue.memcpy (data, devicePtr, sizeof (int)) .wait (

e Simply callwait onthe event

returned from memcpy.
gpuQueue.memcpy (data, devicePtr, sizeof (int)); . .
gpuQueve .wait () ; e Alternatively callwait on the queue.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

€ SYCL Academy

SYNCHRONIZING WITH DATA (BUFFER/ACCE

buf = sycl::buffer(data, sycl::range{1024});

gpuQueue.submit ([&] (sycl::handler &cgh) {

2t~ a~~ = eycl::accessor{buf, cgh};

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

cysiepurwraee for<kernel a>(sycl::range{l1024},

SYC) L.

© SYCL Academy @CLW

SYNCHRONIZING WITH DATA (BUFFER/ACCESSOR)

e Abuffer will also
(synchronize the data it
buf = sycl::buffer(data, sycl::range{1024}); .
Manages on destruction.

gpuQueue.submit ([&] (sycl::handler &cgh) {

auto acc = sycl::accessor{buf, cgh}; ° |t Wlll Walt for any kernel
cgh.parallel for<kernel a>(sycl::range{1024}, fu nctions aCCQSS|ng it to
[=] (sycl::id<1> idx) {
acc[idx] = /* some computation */ Complete and Copy the

T data back to the origin

address before
completing destruction.

}

SYCL and the SYCL logo are tradema:
the Khronos Group Inc.

© SYCL Academy @CLW

SYNCHRONIZING WITH ERRORS

e Errors are handled by a queue and any asynchronous errors can be produced during

any of the synchronization methods we've looked at.
e The best way to ensure all errors are caught is to synchronize by callingwait or

wait_and_throw on the the queue.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

© SYCL Academy

logo are trademarks of

QUESTIONS

GyeL

© SYCL Academy @CLW

EXERCISE

Code_Exercises/Exercise_9_Synchronization/source

Try out the different methods of synchronizing with a kernel function and the resulting data
from the computation.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

