€ SYCL Academy

logo are trademarks of

USING USM

GyeL



© SYCL Academy @CLW

LEARNING OBJECTIVES

e Learn how to allocate memory using USM

e Learn how to copy data to and from USM
allocated memory

e Learn how to access data from USM allocated
memory in a kernel function

e Learn how to free USM memory allocations

1111111111111111111



© SYCL Academy @CLW

FOCUS ON EXPLICIT USM

e Remember that there are different variants of USM; explicit, restricted, concurrent

and system.
e Remember also that there are different ways USM memory can be allocated; host,

device and shared.
e We're going to focus explicit USM and device allocations - this is the minimum

required variant.

SYCL and the SYCL logo are trademarks of
the Khr T

onos Group Inc.



© SYCL Academy @CLW

MALLOC_DEVICE

void* malloc device (size t numBytes, const queue& syclQueue, const property list &proplList = {});

template <typename T>
T* malloc _device(size t count, const queue& syclQueue, const property list &propList = {});

e A USM device allocation is performed by calling one of themalloc_device
functions.

e Both of these functions allocate the specified region of memory on the device
associated with the specified queue.

e The pointer returned is only accessible in a kernel function running on that device.

e Synchronous exception if the device does not have aspect::usm_device_allocations

e Thisis a blocking operation.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.



© SYCL Academy @CLW

FREE

void free(void* ptr, queue& syclQueue);

e In order to prevent memory leaks USM device allocations must be free by calling the

free function.
e The queue must be the same as was used to allocate the memory.

e Thisis a blocking operation.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.



© SYCL Academy @CLW

MEMCPY

event queue::memcpy(void* dest, const void* src, size t numBytes, const std::vector &depEvents);

e Data can be copied to and from a USM device allocation by calling the queue's
memcpy member function.

e The source and destination can be either a host application pointer or a USM device
allocation.

e Thisis an asynchronous operation enqueued to the queue.

e Anevent isreturned which can be used to synchronize with the completion of copy
operation.

e May depend on other events via depEvents

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.



© SYCL Academy @CLW

MEMSET & FILL

event queue::memset (void* ptr, int value, size t numBytes, const std::vector &depEvents);

event queue::fill(void* ptr, const T& pattern, size t count, const std::vector &depEvents);

e The additional queue member functions memset and fill provide operations for
initializing the data of a USM device allocation.

e The member function memset initializes each byte of the data with the value
interpreted as an unsigned char.

e The member function fill initializes the data with a recurring pattern.

e These are also asynchronous operations.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.



© SYCL Academy @CLW

PUTTING IT ALL TOGETHER

int square number (int x) {
auto myQueue = sycl::queue{};
myQueue.submit ([&] (handler &cgh) {
cgh.single task<square number> ([=] () {
/* square some number */
1)
}) wait () ;

return x;

We start with a basic SYCL application which invokes a kernel function with single task.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc. E



© SYCL Academy @CLW

PUTTING IT ALL TOGETHER

int square number (int x) {
auto myQueue = sycl::queue{usm selector{}};

myQueue.submit ([&] (handler &cgh) {
cgh.single task<square number> (
/* square some number */
}) i
}) cwait () ;

(=10 {

return x;

}

We initialize the queue with the usm_selector we wrote in the last exercise, which will
choose a device which supports USM device allocations.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc. E



€ SYCL Academy

SYCL.

PUTTING IT ALL TOGETHER

int square number (int x) {
auto myQueue = sycl::queue{usm selector{}};
auto devicePtr = malloc device<int>(l, myQueue) ;

myQueue.submit ([&] (handler &cgh) {
cgh.single task<square number> (
/* square some number */
IO
}) .wait () ;

(=10 {

return x;

We allocate USM device memory by callingmalloc_device. Here we use the template
variant and specify type int.

SYCL and the SYCL logo are trademarks of

the Khronos Group Inc. m



€ SYCL Academy

SYCL.
PUTTING IT ALL TOGETHER

int square number (int x) {

auto myQueue = sycl::queue{usm selector{}};
auto devicePtr = malloc device<int>(l, myQueue);
myQueue.memcpy (devicePtr, &x, sizeof (int)) .wait();
myQueue.submit ([&] (handler &cgh) {

cgh.single task<square>([=] () {

/* square some number */

1)

}) wait ()

return x;

We copy the value of x in the host application to the USM device memory by calling memcpy
on myQueue. We immediately callwait on the returned event to synchronize with the
completion of the copy operation.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.



€ SYCL Academy

SYCL.

PUTTING IT ALL TOGETHER

int square number (int x) {
auto myQueue = sycl::queue{usm selector{}};
auto devicePtr = malloc device<int>(l, myQueue) ;
myQueue.memcpy (devicePtr, &x, sizeof (int)) .wait();

myQueue.submit ([&] (handler &cgh) {

cgh.single task<square>([=] () {
*devicePtr = (*devicePtr) * (*devicePtr);
1)
}) swait () ;

return x;

We then pass the devicePtr directly to the kernel function and access it can then be
deferenced and the data written to.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.



€ SYCL Academy

SYCL.
PUTTING IT ALL TOGETHER

int square number (int x) {
auto myQueue = sycl::queue{usm selector{}};
auto devicePtr = malloc device<int>(l, myQueue);
myQueue.memcpy (devicePtr, &x, sizeof (int)) .wait();

myQueue.submit ([&] (handler &cgh) {

cgh.single task<square>([=] () {
*devicePtr = (*devicePtr) * (*devicePtr);
1)
1) wait () ;

myQueue.memcpy (&x, devicePtr, sizeof (int)) .wait();

return x;

Finally we copy the result from USM device memory back to the variable x in the host
application by calling memcpy on myQueue.

SYCL and the SYCL logo are trademarks of

the Khronos Group Inc.



€ SYCL Academy

SYCL.

QUEUE SHORTCUTS

template <typename KernelName, typename KernelType>
event queue::single task(const KernelType &KernelFunc);

template <typename KernelName, typename KernelType, int Dims>
event queue::parallel for (range GlobalRange, const KernelType &KernelFunc);

e The queue provides shortcut member functions which allow you to invoke a
single taskoraparallel for withoutdefiningacommand group.
e These can only be used when using the USM data management model.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.



€ SYCL Academy

SYCL.

WITH THE QUEUE SHORTCUT

int square number (int x) {
auto myQueue = sycl::queue{usm selector{}};
auto devicePtr = malloc device<int>(l, myQueue) ;
myQueue.memcpy (devicePtr, &x, sizeof (int)) .wait();

myQueue.single task<square> ([=] () {

*devicePtr = (*devicePtr) * (*devicePtr);
}) cwait () ;
myQueue.memcpy (&x, devicePtr, sizeof (int)) .wait();

return x;

If we use the queue shortcut here it reduces the complexity of the code.

SYCL and the SYCL logo are trademarks of

the Khronos Group Inc.



© SYCL Academy @CLW

USM_WRAPPER COMPUTECPP ONLY

using namespace experimental ({

template <typename T>
class usm wrapper;

}

USM support in ComputeCpp is still experimental.

e You currently need to wrap USM pointersin a usm_wrapper to pass them to a kernel
function.

e Theusm_wrapper will behave like and convert to the raw pointer type.

This will be removed when ComputeCpp fully supports SYCL 2020.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc. m



€ SYCL Academy

SYCL.

WITH THE USM_WRAPPER COMPUTECPP ONLY

int square number (int x) {
auto myQueue = sycl::queue{usm selector{}};

auto devicePtr = experimental::usm wrapper<int>(malloc device<int>(1l, myQueue));

myQueue.memcpy (devicePtr, &x, sizeof (int)) .wait();
myQueue.single task<square> ([=] () {
*devicePtr = (*devicePtr) * (*devicePtr);
1) wait () ;
myQueue.memcpy (&x, devicePtr, sizeof (int)).wait();

return x;

In ComputeCpp we wrap the result of malloc_device with ausm_wrapper soitcan be
passed to the kernel function.

SYCL and the SYCL logo are trademarks of

the Khronos Group Inc.



€ SYCL Academy

logo are trademarks of

QUESTIONS

GyeL



@ SYCLAcademy @C L -

EXERCISE

Code_Exercises/Exercise_8 USM_Vector_Add/source

Implement the vector add from lesson 3 using the USM data management model.

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.



