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The Compact Course

A 1-Day Tutorial

This lecture covers many concepts of Kokkos with Hands-On
Exercises as homework.
Slides: https://github.com/kokkos/kokkos-tutorials/

Intro-Medium/KokkosTutorial_Medium.pdf

For the full lectures, with more capabilities covered, and more
in-depth explanations visit:
https://github.com/kokkos/kokkos-tutorials/wiki/

Kokkos-Lecture-Series

Instructions to get into the AWS cloud instances can be found at:
https://github.com/kokkos/kokkos-tutorials/issues

https://github.com/kokkos/kokkos-tutorials/Intro-Medium/KokkosTutorial_Medium.pdf
https://github.com/kokkos/kokkos-tutorials/Intro-Medium/KokkosTutorial_Medium.pdf
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/issues
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The HPC Hardware Landscape

(a) Initially not working. Now more robust for Fortran than C++, but getting better.
(b) Research effort.
(c) OpenMP 5 by NVIDIA.
(d) OpenMP 5 by HPE.

(e) OpenMP 5 by Intel.
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Cost of Coding

Industry Estimate

A full time software engineer writes 10 lines of production code per
hour: 20k LOC/year.

I Typical HPC production app: 300k-600k lines
I Sandia alone maintains a few dozen

I Large Scientific Libraries:
I E3SM: 1,000k lines
I Trilinos: 4,000k lines

Conservative estimate: need to rewrite 10% of an app to switch
Programming Model

Software Cost Switching Vendors

Just switching Programming Models costs multiple person-years
per app!
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What is Kokkos?

I A C++ Programming Model for Performance Portability
I Implemented as a template library on top CUDA, HIP,

OpenMP, ...
I Aims to be descriptive not prescriptive
I Aligns with developments in the C++ standard

I Expanding solution for common needs of modern science and
engineering codes
I Math libraries based on Kokkos
I Tools for debugging, profiling and tuning
I Utilities for integration with Fortran and Python

I Is is an Open Source project with a growing community
I Maintained and developed at https://github.com/kokkos
I Hundreds of users at many large institutions

https://github.com/kokkos
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Kokkos at the Center



June 15, 2021 7/172

The Kokkos EcoSystem
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The Kokkos Team

Kokkos Core: C.R.Trott, J. Ciesko, V. Dang, N. Ellingwood, D. Ibanez, , H. Finkel,
N. Liber, D. Lebrun-Grandie, D. Arndt, B. Turcksin, J. Madsen, R.
Gayatri
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova, D. Sunder-
land, D.S. Hollman, J. Miles, J. Wilke

Kokkos Kernels: S. Rajamanickam, L. Berger, V. Dang, N. Ellingwood, E. Harvey, B.
Kelley, K. Kim, A. Powell, C.R. Trott
former: J. Wilke, S. Acer

Kokkos Tools D. Poliakoff, C. Lewis, S. Hammond, D. Ibanez, J. Madsen, S. Moore,
C.R. Trott

Kokkos Support C.R. Trott, G. Shipmann, G. Womeldorff, and all of the above
former: H.C. Edwards, G. Lopez, F. Foertter
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Kokkos and the C++ Standard

Kokkos helps improve ISO C++

Ten current or former Kokkos team members are members of the
ISO C++ standard committee.
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Kokkos Users

Kokkos has a growing OpenSource Community

I 18 ECP projects list Kokkos as Critical Dependency
I 41 list C++ as critical
I 24 list Lapack as critical
I 21 list Fortran as critical

I Slack Channel: 600 members from 75+ institutions
I 20% Sandia Nat. Lab.
I 35% other US Labs
I 20% universities
I 25% other

I GitHub: 800 stars
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Welcome to Kokkos

Online Resources:
I https://github.com/kokkos:

I Primary Kokkos GitHub Organization

I https://github.com/kokkos/kokkos-tutorials/wiki/
Kokkos-Lecture-Series:
I Slides, recording and Q&A for the Full Lectures

I https://github.com/kokkos/kokkos/wiki:
I Wiki including API reference

I https://kokkosteam.slack.com:
I Slack channel for Kokkos.
I Please join: fastest way to get your questions answered.
I Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos/wiki
https://kokkosteam.slack.com


June 15, 2021 12/172

Data parallel patterns

Learning objectives:

I How computational bodies are passed to the Kokkos runtime.

I How work is mapped to execution resources.

I The difference between parallel for and
parallel reduce.

I Start parallelizing a simple example.
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Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

I each iteration of a computational body is a unit of work.

I an iteration index identifies a particular unit of work.

I an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.
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Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()( a work assignment ) const {

/* ... computational body ... */

...

};
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Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor );

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()( const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.
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Using Kokkos for data parallel patterns (6)

The complete picture (using functors):

1. Defining the functor (operator+data):

struct AtomForceFunctor {

ForceType _atomForces;

AtomDataType _atomData;

AtomForceFunctor(ForceType atomForces , AtomDataType data) :

_atomForces(atomForces), _atomData(data) {}

void operator ()( const int64_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData );

}

}

2. Executing in parallel with Kokkos pattern:
AtomForceFunctor functor(atomForces , data);

Kokkos :: parallel_for(numberOfAtoms , functor );
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Using Kokkos for data parallel patterns (7)

Functors are tedious ⇒ C++11 Lambdas are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.
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parallel for examples

How does this compare to OpenMP?

for (int64_t i = 0; i < N; ++i) {

/* loop body */

}

#pragma omp parallel for

for (int64_t i = 0; i < N; ++i) {

/* loop body */

}

parallel_for(N, [=] (const int64_t i) {

/* loop body */

});

Important concept

Simple Kokkos usage is no more conceptually difficult than
OpenMP, the annotations just go in different places.
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Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

Wikipedia
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double totalIntegral = 0;

for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower );
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}
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Scalar integration (1)

An (incorrect) attempt:

double totalIntegral = 0;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower );

totalIntegral += function(x);},

);

totalIntegral *= dx;

First problem: compiler error; cannot increment totalIntegral
(lambdas capture by value and are treated as const!)
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Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;

double * totalIntegralPointer = &totalIntegral;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower );

*totalIntegralPointer += function(x);},

);

totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1

0 load

1 increment load

2 write increment

3 write
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Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue );
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Scalar integration (4)

Example: Scalar integration

double totalIntegral = 0;

#pragma omp parallel for reduction(+: totalIntegral)

for (int64_t i = 0; i < numberOfIntervals; ++i) {

totalIntegral += function (...);

}

double totalIntegral = 0;

parallel_reduce(numberOfIntervals ,

[=] (const int64_t i, double & valueToUpdate) {

valueToUpdate += function (...);

},

totalIntegral );

I The operator takes two arguments: a work index and a value
to update.

I The second argument is a thread-private value that is
managed by Kokkos; it is not the final reduced value.
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Naming your kernels

Always name your kernels!

Giving unique names to each kernel is immensely helpful for
debugging and profiling. You will regret it if you don’t!

I Non-nested parallel patterns can take an optional string
argument.

I The label doesn’t need to be unique, but it is helpful.

I Anything convertible to ”std::string”

I Used by profiling and debugging tools (see Profiling Tutorial)

Example:
double totalIntegral = 0;

parallel_reduce("Reduction",numberOfIntervals ,

[=] (const int64_t i, double & valueToUpdate) {

valueToUpdate += function (...);

},

totalIntegral );
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Recurring Exercise: Inner Product

Exercise: Inner product < y ,A ∗ x >

Details:

I y is Nx1, A is NxM, x is Mx1

I We’ll use this exercise throughout the tutorial
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Exercise #1: include, initialize, finalize Kokkos

The first step in using Kokkos is to include, initialize, and finalize:

#include <Kokkos_Core.hpp >

int main(int argc , char* argv []) {

/* ... do any necessary setup (e.g., initialize MPI) ... */

Kokkos :: initialize(argc , argv);

{

/* ... do computations ... */

}

Kokkos :: finalize ();

return 0;

}

(Optional) Command-line arguments or environment variables:

--kokkos-threads=INT or
KOKKOS NUM THREADS

total number of threads

--kokkos-device-id=INT or
KOKKOS DEVICE ID

device (GPU) ID to use
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Exercise #1: Inner Product, Flat Parallelism on the CPU

Exercise: Inner product < y ,A ∗ x >

Details:

I Location: Exercises/01/Begin/

I Look for comments labeled with “EXERCISE”

I Need to include, initialize, and finalize Kokkos library

I Parallelize loops with parallel for or parallel reduce

I Use lambdas instead of functors for computational bodies.

I For now, this will only use the CPU.
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Exercise #1: logistics

Compiling for CPU

# gcc using OpenMP (default) and Serial back -ends ,

# (optional) change non -default arch with KOKKOS_ARCH

make -j KOKKOS_DEVICES=OpenMP ,Serial KOKKOS_ARCH =...

Running on CPU with OpenMP back-end

# Set OpenMP affinity

export OMP_NUM_THREADS =8

export OMP_PROC_BIND=spread OMP_PLACES=threads

# Print example command line options:

./01 _Exercise.host -h

# Run with defaults on CPU

./01 _Exercise.host

# Run larger problem

./01 _Exercise.host -S 26

Things to try:

I Vary problem size with cline arg -S s

I Vary number of rows with cline arg -N n

I Num rows = 2n, num cols = 2m, total size = 2s == 2n+m
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Exercise #1 results
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Section Summary

I Simple usage is similar to OpenMP, advanced features are
also straightforward

I Three common data-parallel patterns are parallel for,
parallel reduce, and parallel scan.

I A parallel computation is characterized by its pattern, policy,
and body.

I User provides computational bodies as functors or lambdas
which handle a single work item.
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Views

Learning objectives:

I Motivation behind the View abstraction.

I Key View concepts and template parameters.

I The View life cycle.
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View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()( const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

⇒ Views
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Views (0)

View abstraction

I A lightweight C++ class with a pointer to array data and a
little meta-data,

I that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double*, ...> x(...) , y(...);

... populate x, y...

parallel_for("DAXPY",N, [=] (const int64_t i) {

// Views x and y are captured by value (copy)

y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers, so copy them in your functors.
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Views (1)

View overview:

I Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

I Number of dimensions (rank) is fixed at compile-time.

I Arrays are rectangular, not ragged.

I Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

I Access elements via ”(...)” operator.

Example:

View <double ***> data("label", N0 , N1, N2); //3 run, 0 compile

View <double **[N2]> data("label", N0, N1); //2 run, 1 compile

View <double *[N1][N2]> data("label", N0); //1 run, 2 compile

View <double[N0][N1][N2]> data("label"); //0 run, 3 compile

// Access

data(i,j,k) = 5.3;

Note: runtime-sized dimensions must come first.
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Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

I They behave like shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);

a = b;

View <double**> c(b);

a(0,2) = 1;

b(0,2) = 2;

c(0,2) = 3;

print_value( a(0,2) );

What gets printed?
3.0
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Views (3)

View Properties:
I Accessing a View’s sizes is done via its extent(dim)

function.
I Static extents can additionally be accessed via

static extent(dim).

I You can retrieve a raw pointer via its data() function.

I The label can be accessed via label().

Example:

View <double *[5]> a("A",N0);

assert(a.extent (0) == N0);

assert(a.extent (1) == 5);

static_assert(a.static_extent (1) == 5);

assert(a.data() != nullptr );

assert(a.label () == "A");
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Exercise #2: Inner Product, Flat Parallelism on the CPU, with Views

I Location: Exercises/02/Begin/

I Assignment: Change data storage from arrays to Views.

I Compile and run on CPU, and then on GPU with UVM

make -j KOKKOS_DEVICES=OpenMP # CPU -only using OpenMP

make -j KOKKOS_DEVICES=Cuda # GPU - note UVM in Makefile

# Run exercise

./02 _Exercise.host -S 26

./02 _Exercise.cuda -S 26

# Note the warnings , set appropriate environment variables

I Vary problem size: -S #

I Vary number of rows: -N #

I Vary repeats: -nrepeat #

I Compare performance of CPU vs GPU
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Execution and Memory spaces

Execution and Memory Spaces

Learning objectives:

I Heterogeneous nodes and the space abstractions.

I How to control where parallel bodies are run, execution
space.

I How to control where view data resides, memory space.

I How to avoid illegal memory accesses and manage data
movement.

I The need for Kokkos::initialize and finalize.

I Where to use Kokkos annotation macros for portability.
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Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism

(i.e., “place to run code”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Execution spaces: Serial, Threads, OpenMP, Cuda, HIP, ...
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Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for("MyKernel", numberOfSomethings ,

[=] (const int64_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will Host code be run? CPU? GPU?
⇒ Always in the host process

I Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

I How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
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Execution spaces (3)

Changing the parallel execution space:

parallel_for("Label",

RangePolicy < Execut ionSpace >(0, numberOfIntervals),

[=] (const int64_t i) {

/* ... body ... */

});

parallel_for("Label",

numberOfIntervals , // => RangePolicy <>(0, numberOfIntervals)

[=] (const int64_t i) {

/* ... body ... */

});

Requirements for enabling execution spaces:
I Kokkos must be compiled with the execution spaces enabled.

I Execution spaces must be initialized (and finalized).

I Functions must be marked with a macro for non-CPU spaces.

I Lambdas must be marked with a macro for non-CPU spaces.
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Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
s t r u c t P a r a l l e l F u n c t o r {

KOKKOS INLINE FUNCTION
d o u b l e h e l p e r F u n c t i o n ( c o n s t i n t 6 4 t s ) c o n s t { . . .}
KOKKOS INLINE FUNCTION
v o i d o p e r a t o r ( ) ( c o n s t i n t 6 4 t i n d e x ) c o n s t {

h e l p e r F u n c t i o n ( i n d e x ) ;
}

}
// Where kokkos d e f i n e s :
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e /∗ #i f CPU−o n l y ∗/
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e d e v i c e h o s t /∗ #i f CPU+Cuda ∗/

Lambda annotation with KOKKOS LAMBDA macro
Kokkos : : p a r a l l e l f o r ( ” L a b e l ” , n u m b e r O f I t e r a t i o n s ,

KOKKOS LAMBDA ( c o n s t i n t 6 4 t i n d e x ) { . . . } ) ;

// Where Kokkos d e f i n e s :
#d e f i n e KOKKOS LAMBDA [=] /∗ #i f CPU−o n l y ∗/
#d e f i n e KOKKOS LAMBDA [=] d e v i c e h o s t /∗ #i f CPU+Cuda ∗/
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Execution spaces (5)
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Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (int64_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += data(index );

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces
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Memory spaces (0)

Memory space:
explicitly-manageable memory resource

(i.e., “place to put data”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);
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Memory spaces (2)

Example: HostSpace

View <double**, HostSpace> hostView (... constructor arguments ...);

Example: CudaSpace

View <double**, CudaSpace> view (... constructor arguments ...);
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Execution and Memory spaces (0)

Anatomy of a kernel launch:

1. User declares views, allocating.

2. User instantiates a functor with
views.

3. User launches
parallel something:
I Functor is copied to the device.
I Kernel is run.
I Copy of functor on the device is

released.

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev (...);

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

});

Note: no deep copies of array data are performed;
views are like pointers.
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Execution and Memory spaces (1)

Example: one view

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev;

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

});
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Execution and Memory spaces (2)

Example: two views

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev;

View <int*, Host > host;

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

host(i) = ...;

});
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Execution and Memory spaces (2)

Example: two views

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev;

View <int*, Host > host;

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

host(i) = ...;

});



June 15, 2021 50/172

Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1: View lives in CudaSpace

View <double*, CudaSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index );

},

sum);
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Example (redux): summing an array with the GPU

(failed) Attempt 1: View lives in CudaSpace

View <double*, CudaSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index );

},

sum);

fault



June 15, 2021 51/172

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index );

},

sum);

What’s the solution?
I CudaUVMSpace

I CudaHostPinnedSpace (skipping)

I Mirroring
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Execution and Memory spaces (5)

CudaUVMSpace

#define KL KOKKOS_LAMBDA

View <double*,

CudaUVMSpace> array;

array = ... from file ...

double sum = 0;

parallel_reduce("Label", N,

KL (int i, double & d) {

d += array(i);

},

sum);

Cuda runtime automatically handles data movement,
at a performance hit.
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Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.

Mirroring schematic

using view_type = Kokkos ::View <double**, Space >;
view_type view (...);

view_type ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);
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Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView );

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);
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Mirrors of Views in HostSpace

What if the View is in HostSpace too? Does it make a copy?

typedef Kokkos ::View <double*, Space> ViewType;

ViewType view("test", 10);

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

I create mirror view allocates data only if the host process
cannot access view’s data, otherwise hostView references the
same data.

I create mirror always allocates data.

I Reminder: Kokkos never performs a hidden deep copy.
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Exercise #3: Flat Parallelism on the GPU, Views and Host Mirrors

Details:

I Location: Exercises/03/Begin/

I Add HostMirror Views and deep copy

I Make sure you use the correct view in initialization and Kernel

# Compile for CPU

make -j KOKKOS_DEVICES=OpenMP

# Compile for GPU (we do not need UVM anymore)

make -j KOKKOS_DEVICES=Cuda

# Run on GPU

./03 _Exercise.cuda -S 26

Things to try:

I Vary problem size and number of rows (-S ...; -N ...)

I Change number of repeats (-nrepeat ...)

I Compare behavior of CPU vs GPU
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View and Spaces Section Summary

I Data is stored in Views that are “pointers” to
multi-dimensional arrays residing in memory spaces.

I Views abstract away platform-dependent allocation,
(automatic) deallocation, and access.

I Heterogeneous nodes have one or more memory spaces.

I Mirroring is used for performant access to views in host and
device memory.

I Heterogeneous nodes have one or more execution spaces.

I You control where parallel code is run by a template
parameter on the execution policy, or by compile-time
selection of the default execution space.
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Managing memory access patterns
for performance portability

Learning objectives:

I How the View’s Layout parameter controls data layout.

I How memory access patterns result from Kokkos mapping
parallel work indices and layout of multidimensional array data

I Why memory access patterns and layouts have such a
performance impact (caching and coalescing).

I See a concrete example of the performance of various memory
configurations.
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Example: inner product (0)

Kokkos :: parallel_reduce("Label",

RangePolicy <ExecutionSpace >(0, N),

KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;

for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry);

}

valueToUpdate += y(row) * thisRowsSum;

}, result );

Driving question: How should A be laid out in memory?
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Example: inner product (1)

Layout is the mapping of multi-index to memory:

LayoutLeft

in 2D, “column-major”

LayoutRight

in 2D, “row-major”
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Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

I Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

I If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

I Layouts are extensible: ≈ 50 lines

I Advanced layouts: LayoutStride, LayoutTiled, ...
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Exercise #4: Inner Product, Flat Parallelism

Details:

I Location: Exercises/04/Begin/

I Replace ‘‘N’’ in parallel dispatch with RangePolicy<ExecSpace>

I Add MemSpace to all Views and Layout to A

I Experiment with the combinations of ExecSpace, Layout to view
performance

Things to try:

I Vary problem size and number of rows (-S ...; -N ...)

I Change number of repeats (-nrepeat ...)

I Compare behavior of CPU vs GPU

I Compare using UVM vs not using UVM on GPUs

I Check what happens if MemSpace and ExecSpace do not match.
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Exercise #4: Inner Product, Flat Parallelism
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Caching and coalescing (0)

Thread independence:

operator ()( int index , double & valueToUpdate) const {

const double d = _data(index );

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

I CPU threads are independent.
I i.e., threads may execute at any rate.

I GPU threads execute synchronized.
I i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?
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Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:

GPUs: many (synchronized) cores with a shared cache:
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Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access on GPUs and non-cached loads on CPUs
greatly reduces performance (can be 10X)
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Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index );

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?
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Mapping indices to cores (1)

Iterating for the execution space:

operator ()( int index , double & valueToUpdate) const {

const double d = _data(index );

valueToUpdate += d;

}

As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.
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Mapping indices to cores (2)

Rule of Thumb

Kokkos index mapping and default layouts provide efficient access
if iteration indices correspond to the first index of array.

Example:

View <double ***, ...> view (...);

...

Kokkos :: parallel_for("Label", ... ,

KOKKOS_LAMBDA (int workIndex) {

...

view (..., ... , workIndex ) = ...;

view (... , workIndex , ... ) = ...;

view(workIndex , ... , ... ) = ...;

});

...
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Example: inner product (3)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout optimally for the
architecture.

Analysis: column-major (LayoutLeft)

I HostSpace: uncached (bad)

I CudaSpace: coalesced (good)
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Example: inner product (4)

Analysis: Kokkos architecture-dependent

View <double**, Execut ionSpace > A(N, M);

parallel_for(RangePolicy < Execut ionSpace >(0, N),

... thisRowsSum += A(j, i) * x(i);

(a) OpenMP (b) Cuda

I HostSpace: cached (good)

I CudaSpace: coalesced (good)
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Example: inner product (5)
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Memory Access Pattern Summary

I Every View has a Layout set at compile-time through a
template parameter.

I LayoutRight and LayoutLeft are most common.

I Views in HostSpace default to LayoutRight and Views in
CudaSpace default to LayoutLeft.

I Layouts are extensible and flexible.

I For performance, memory access patterns must result in
caching on a CPU and coalescing on a GPU.

I Kokkos maps parallel work indices and multidimensional array
layout for performance portable memory access patterns.

I There is nothing in OpenMP, OpenACC, or OpenCL to manage
layouts.
⇒ You’ll need multiple versions of code or pay the
performance penalty.
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Advanced Reductions

Learning objectives:

I How to use Reducers to perform different reductions.

I How to do multiple reductions in one kernel.

I Using Kokkos::View’s as result for asynchronicity.
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Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >( max_value ));

I Note how the operation in the body matches the reducer op!

I The scalar type is used as a template argument.

I Many reducers available: Sum, Prod, Min, Max, MinLoc,

... see: https://github.com/kokkos/kokkos/wiki/Data-Parallelism

I Some reducers (like MinLoc) use special scalar types!

MinLoc <T,I,S>:: value_type result;

parallel_reduce("Label",N,Functor ,MinLoc <T,I,S>( result ));

https://github.com/kokkos/kokkos/wiki/Data-Parallelism


June 15, 2021 75/172

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >( max_value ));

I Note how the operation in the body matches the reducer op!

I The scalar type is used as a template argument.

I Many reducers available: Sum, Prod, Min, Max, MinLoc,

... see: https://github.com/kokkos/kokkos/wiki/Data-Parallelism

I Some reducers (like MinLoc) use special scalar types!

MinLoc <T,I,S>:: value_type result;

parallel_reduce("Label",N,Functor ,MinLoc <T,I,S>( result ));

https://github.com/kokkos/kokkos/wiki/Data-Parallelism


June 15, 2021 75/172

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >( max_value ));

I Note how the operation in the body matches the reducer op!

I The scalar type is used as a template argument.

I Many reducers available: Sum, Prod, Min, Max, MinLoc,

... see: https://github.com/kokkos/kokkos/wiki/Data-Parallelism

I Some reducers (like MinLoc) use special scalar types!

MinLoc <T,I,S>:: value_type result;

parallel_reduce("Label",N,Functor ,MinLoc <T,I,S>( result ));

https://github.com/kokkos/kokkos/wiki/Data-Parallelism


June 15, 2021 75/172

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >( max_value ));

I Note how the operation in the body matches the reducer op!

I The scalar type is used as a template argument.

I Many reducers available: Sum, Prod, Min, Max, MinLoc,

... see: https://github.com/kokkos/kokkos/wiki/Data-Parallelism

I Some reducers (like MinLoc) use special scalar types!

MinLoc <T,I,S>:: value_type result;

parallel_reduce("Label",N,Functor ,MinLoc <T,I,S>( result ));

https://github.com/kokkos/kokkos/wiki/Data-Parallelism


June 15, 2021 75/172

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >( max_value ));

I Note how the operation in the body matches the reducer op!

I The scalar type is used as a template argument.

I Many reducers available: Sum, Prod, Min, Max, MinLoc,

... see: https://github.com/kokkos/kokkos/wiki/Data-Parallelism

I Some reducers (like MinLoc) use special scalar types!

MinLoc <T,I,S>:: value_type result;

parallel_reduce("Label",N,Functor ,MinLoc <T,I,S>( result ));

https://github.com/kokkos/kokkos/wiki/Data-Parallelism


June 15, 2021 76/172

Simultaneous Reductions

Sometimes multiple reductions are needed

I New experimental feature in Kokkos (version 3.2)

I Provide multiple reducers/result arguments

I Functor/Lambda operator takes matching thread-local
variables

I Mixing scalar types is fine.

float max_value = 0;

double sum = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i,float& tl_max ,double& tl_sum ){

float a_i = a[i];

if(a_i > tl_max) tl_max = a_i;

tl_sum += a_i;

}, Kokkos ::Max <float >( max_value),sum);
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Views as Result arguments

Reducing into a Scalar is blocking!
I Providing a reference to scalar means no lifetime expectation.

I Call to parallel reduce returns after writing the result.

I Kokkos::View can be used as a result, allowing for
potentially non-blocking execution.

I Can provide View to host memory, or to memory accessible by
the ExecutionSpace for the reduction.

I Works with Reducers too!

View <double ,HostSpace > h_sum("sum_h");

View <double ,CudaSpace > d_sum("sum_d");

using policy_t = RangePolicy <Cuda >;

parallel_reduce("Label", policy_t(0,N), SomeFunctor ,

h_sum);

parallel_reduce("Label", policy_t(0,N), SomeFunctor ,

Kokkos ::Sum <double ,CudaSpace >(d_sum ));
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Subviews

Subviews: Taking slices of
Views

Learning objectives:

I Introduce Kokkos::subview—basic capabilities and syntax

I Suggested usage and practices

I View assignment rules
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Subviews: Motivation

Sometimes you have to call functions on a subset of data:

Example: call a frobenius norm on a matrix slice of a rank-3 tensor:

double special_norm(View <double ***> tensor , int i) {

auto matrix = ???;

// Call a function that takes a matrix:

return some_library :: frobenius_norm(matrix );

}

In Fortran or Matlab or Python you can get such a slice:

tensor(i,:,:)

Kokkos can do that too!

Subview

Kokkos::subview can be used to get a view to a subset of an
existing View.
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Subviews (1)

Subview description:

I A subview is a “slice” of a View

I The function template Kokkos::subview() takes a View and
a slice for each dimension and returns a View of the
appropriate shape.

I The subview and original View point to the same data—no
extra memory allocation nor copying

I Can be constructed on host or within a kernel, since no
allocation of memory occurs

I Similar capability as provided by Matlab, Fortran, Python,
etc., using “colon” notation
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Subviews (2)

Introductory Usage Demo:

Given a View:

Kokkos ::View <double ***> v("v", N0 , N1 , N2);

Say we want a 2-dimensional slice at an index i0 in the first
dimension—that is, in Matlab/Fortran/Python notation:

slicei0 = v(i0 , :, :);

This can be accomplished in Kokkos using a subview as follows:

auto sv_i0 =

Kokkos :: subview(v, i0 , Kokkos ::ALL , Kokkos ::ALL);

// Just like in Python , you can do the same thing with

// the equivalent of v(i0, 0:N1, 0:N2)

auto sv_i0_other =

Kokkos :: subview(v, i0 , Kokkos :: make_pair (0, N1),

Kokkos :: make_pair(0, N2));
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Subviews (3)

Subview can take three types of slice arguments:
I Index

I For every index i the rank of the resulting View is decreased by
one.

I Must be between 0 <= i < extent(dim)

I Kokkos::pair
I References a half-open range of indices.
I The begin and end must be within the extents of the original

view.

I Kokkos::ALL
I References the entire extent in that dimension.
I Equivalent to providing make pair(0,v.extent(dim))
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Subviews (4)

Usage notes:
I Use auto for the type of a subview (unless you can’t)

I The return type of Kokkos::subview() is implementation
defined for performance reasons

I You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

I Use Kokkos::pair for partial ranges if subview created
within a kernel

I Constructing subviews in inner loop code can have
performance implications (for now. . . )
I This will likely be far less of an issue in the future.
I Prioritize readability and maintainability first, then make

changes only if you see a performance impact.
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Exercise—Subviews: Basic usage

Details:

I Location: Exercises/subview/Begin/

I This begins with the Solution of 04

I In the parallel reduce kernel, create a subview for row j of view A

I Use this subview when computing A(j,:)*x(:) rather than the matrix
A

# Compile for CPU

make -j KOKKOS_DEVICES=OpenMP

# Compile for GPU (we do not need UVM anymore)

make -j KOKKOS_DEVICES=Cuda

# Run on GPU

./ subview_exercise.cuda -S 26
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Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

I View<int**> a; a = View<int*[5]>("b", 4)

=> Okay

I View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

I View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

I View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

I View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

I View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error
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Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

I View<const int*> a; a = View<int*>("b", 4)

=> Okay

I View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

I View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

I View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)
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View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

I View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

I View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

I View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)
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Subview Summary

I Use subviews to get a portion of a View. Helps with:
I code reuse
I code readability
I library function compatibility

I Kokkos supports slicing Views similar to
Python/Matlab/Fortran slicing syntax

auto sv = Kokkos :: subview(v, 42, ALL , std:: make_pair (3, 17));

I The return type of subview is complicated. Use auto!!
I View::operator=() just does the “Right Thing”TM

I So generally don’t worry about it at first! This is advanced
stuff, and more for future reference.
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MDRangePolicy

Tightly Nested Loops with
MDRangePolicy

Learning objectives:

I Demonstrate usage of the MDRangePolicy with tightly nested
loops.

I Syntax - Required and optional settings

I Code demo and example
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MDRangePolicy (0)

Motivating example: Consider the nested for loops:

for ( int i = 0; i < N0; ++i )

for ( int j = 0; j < N1; ++j )

for ( int k = 0; k < N2; ++k )

some_init_fcn(i, j, k);

Based on Kokkos lessons thus far, you might parallelize this as

Kokkos :: parallel_for("Label", N0,

KOKKOS_LAMBDA (const i) {

for ( int j = 0; j < N1; ++j )

for ( int k = 0; k < N2; ++k )

some_init_fcn(i, j, k);

}

);

I This only parallelizes along one dimension, leaving potential

parallelism unexploited.

I What if Ni is too small to amortize the cost of constructing a

parallel region, but Ni*Nj*Nk makes it worthwhile?
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MDRangePolicy (1)

OpenMP has a solution: the collapse clause
#pragma omp parallel for collapse (3)

for (int64_t i = 0; i < N0; ++i) {

for (int64_t j = 0; j < N1; ++j) {

for (int64_t k = 0; k < N2; ++k) {

/* loop body */

}

}

}

Note this changed the policy by adding a ‘collapse‘ clause.

With Kokkos you also change the policy:
parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});
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MDRangePolicy (2)

MDRangePolicy

MDRangePolicy can parallelize tightly nested loops of 1 to 6
dimensions.

parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

I Specify the dimensionality of the loop with Rank < DIM >.

I As with Kokkos Views: only rectangular iteration spaces.

I Provide initializer lists for begin and end values.

I The functor/lambda takes matching number of indicies.
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MDRangePolicy (3)

You can also do Reductions:
double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result );

I The Policy doesn’t change the rules for ‘parallel reduce‘.

I Additional Thread Local Argument.

I Can do other reductions with reducers.

I Can use ‘View‘s as reduction argument.

I Multiple reducers not yet implemented though.
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MDRangePolicy (4)

In structured grid applications a tiling strategy is often used to
help with caching.

Tiling

MDRangePolicy uses a tiling strategy for the iteration space.

I Specified as a third initializer list.
I For GPUs a tile is handled by a single thread block.

I If you provide too large a tile size this will fail!

I In Kokkos 3.3 we will add auto tuning for tile sizes.

double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2},{T0 ,T1,T2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result );
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MDRangePolicy (5)

Initializing a Matrix:

View <double**,LayoutLeft > A("A",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2>>({0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

A(i,j) = 1000.0 * i + 1.0*j;

});

View <double**,LayoutRight > B("B",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2>>({0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

B(i,j) = 1000.0 * i + 1.0*j;

});

How do I make sure that I get the right access pattern?
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MDRangePolicy (6)

Iteration Pattern

MDRangePolicy provides compile time control over iteration
patterns.

Kokkos : : Rank< N, I t e r a t e O u t e r , I t e r a t e I n n e r >

I N: (Required) the rank of the index space (limited from 2 to 6)

I IterateOuter (Optional) iteration pattern between tiles
I Options: Iterate::Left, Iterate::Right, Iterate::Default

I IterateInner (Optional) iteration pattern within tiles
I Options: Iterate::Left, Iterate::Right, Iterate::Default
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MDRangePolicy (7)

Initializing a Matrix fast:

View <double**,LayoutLeft > A("A",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2,Iterate ::Left ,Iterate ::Left >>(

{0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

A(i,j) = 1000.0 * i + 1.0*j;

});

View <double**,LayoutRight > B("B",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2,Iterate ::Right ,Iterate ::Right >>(

{0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

B(i,j) = 1000.0 * i + 1.0*j;

});

Default Patterns Match

Default iteration patterns match the default memory layouts!
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Exercise - mdrange: Initialize multi-dim views with MDRangePolicy

Details:

I Location: Exercises/mdrange/Begin/

I This begins with the Solution of 02

I Initialize the device Views x and y directly on the device using a
parallel for and RangePolicy

I Initialize the device View matrix A directly on the device using a
parallel for and MDRangePolicy

# Compile for CPU

make -j KOKKOS_DEVICES=OpenMP

# Compile for GPU (we do not need UVM anymore)

make -j KOKKOS_DEVICES=Cuda

# Run on GPU

./ mdrange_exercise.cuda -S 26
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Common Policy Arguments

Template Parameters common to ALL policies.
I ExecutionSpace: control where code executes

I Options: Serial, OpenMP, Threads, Cuda, HIP, ...

I Schedule<Options>: set scheduling policy.
I Options: Static, Dynamic

I IndexType<Options>: control internal indexing type
I Options: int, long, etc

I WorkTag: enables multiple operators in one functor

struct Foo {

struct Tag1 {}; struct Tag2 {};

KOKKOS_FUNCTION void operator(Tag1 , int i) const {...}

KOKKOS_FUNCTION void operator(Tag2 , int i) const {...}

void run_both(int N) {

parallel_for(RangePolicy <Tag1 >(0,N),*this);

parallel_for(RangePolicy <Tag2 >(0,N),*this);

}

});
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MDRangePolicy Section Summary

MDRangePolicy

I allows for tightly nested loops similar to OpenMP’s collapse
clause.

I requires functors/lambdas with as many parameters as its
rank is.

I works with parallel for and parallel reduce.

I uses a tiling strategy for the iteration space.

I provides compile time control over iteration patterns.
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Hierarchical parallelism
Finding and exploiting more parallelism in your computations.

Learning objectives:

I Similarities and differences between outer and inner levels of
parallelism

I Thread teams (league of teams of threads)

I Performance improvement with well-coordinated teams
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Example: inner product (0)

(Flat parallel) Kernel:

Kokkos :: parallel_reduce("yAx",N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result );

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?
I Atomics

I Thread teams
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Example: inner product (2)

Using an atomic with every element is doing scalar integration with
atomics. (See module 3)

Instead, you could envision doing a large number of
parallel reduce kernels.

for each row

Functor functor(row , ...);

parallel_reduce(M, functor );

}

This is an example of hierarchical work.

Important concept: Hierarchical parallelism

Algorithms that exhibit hierarchical structure can exploit
hierarchical parallelism with thread teams.
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Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.

High-level strategy:
1. Do one parallel launch of N teams.

2. Each team handles a row.

3. The threads within teams perform a reduction.

4. The thread teams perform a reduction.
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Example: inner product (4)

The final hierarchical parallel kernel:

parallel_reduce("yAx",

team_policy(N, Kokkos ::AUTO),

KOKKOS_LAMBDA (const member_type & teamMember , double & update) {

int row = teamMember.league_rank ();

double thisRowsSum = 0;

parallel_reduce(TeamThreadRange(teamMember , M),

[=] (int col, double & innerUpdate) {

innerUpdate += A(row, col) * x(col);

}, thisRowsSum );

if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;

}

}, result );
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TeamPolicy (0)

Important point

Using teams is changing the execution policy.

“Flat parallelism” uses RangePolicy:

We specify a total amount of work.

// total work = N

parallel_for("Label",

RangePolicy <ExecutionSpace >(0,N), functor );

“Hierarchical parallelism” uses TeamPolicy:

We specify a team size and a number of teams.

// total work = numberOfTeams * teamSize

parallel_for("Label",

TeamPolicy <ExecutionSpace >( numberOfTeams , teamSize), functor );
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TeamPolicy (1)

Important point

When using teams, functor operators receive a team member.

typedef typename TeamPolicy <ExecSpace >:: member_type member_type;

void operator ()( const member_type & teamMember) {

// How many teams are there?
const unsigned int league_size = teamMember.league_size ();

// Which team am I on?
const unsigned int league_rank = teamMember.league_rank ();

// How many threads are in the team?
const unsigned int team_size = teamMember.team_size ();

// Which thread am I on this team?
const unsigned int team_rank = teamMember.team_rank ();

// Make threads in a team wait on each other:
teamMember.team_barrier ();

}
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TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {

thisRowsSum += A(row ,col) * x(col);

});

if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

⇒ Nested parallel patterns
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TeamThreadRange (3)

TeamThreadRange:

operator () (const member_type & teamMember , double & update ) {

const int row = teamMember.league_rank ();

double thisRowsSum;

parallel_reduce(TeamThreadRange(teamMember , M),

[=] (const int col , double & thisRowsPartialSum ) {

thisRowsPartialSum += A(row , col) * x(col);

}, thisRowsSum );

if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;

}

}

I The mapping of work indices to threads is
architecture-dependent.

I The amount of work given to the TeamThreadRange need
not be a multiple of the team size.

I Intrateam reduction handled by Kokkos.
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Nested parallelism

Anatomy of nested parallelism:

parallel_outer("Label",

TeamPolicy <ExecutionSpace >( numberOfTeams , teamSize),

KOKKOS_LAMBDA (const member_type & teamMember [ , . . . ] ) {

/* beginning of outer body */

parallel_inner(

TeamThreadRange(teamMember , thisTeamsRangeSize),

[=] (const unsigned int indexWithinBatch [ , . . . ] ) {

/* inner body */

} [ , . . . ] );
/* end of outer body */

} [ , . . . ] );

I parallel outer and parallel inner may be any
combination of for and/or reduce.

I The inner lambda may capture by reference, but
capture-by-value is recommended.

I The policy of the inner lambda is always a TeamThreadRange.

I TeamThreadRange cannot be nested.
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What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(

TeamPolicy <ExecutionSpace >( numberOfTeams , Kokkos ::AUTO),

/* functor */);

GPUs

I Special hardware available for coordination within a team.

I Within a team 32 (NVIDIA) or 64 (AMD) threads execute
“lock step.”

I Maximum team size: 1024; Recommended team size:
128/256

Intel Xeon Phi:

I Recommended team size: # hyperthreads per core

I Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing
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Exercise: TeamPolicy

Details:

I Location: Exercises/team policy/

I Replace RangePolicy<Space> with TeamPolicy<Space>

I Use AUTO for team size

I Make the inner loop a parallel reduce with TeamThreadRange

policy

I Experiment with the combinations of Layout, Space, N to view
performance

I Hint: what should the layout of A be?

Things to try:

I Vary problem size and number of rows (-S ...; -N ...)

I Compare behavior with Exercise 4 for very non-square matrices

I Compare behavior of CPU vs GPU
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Reminder, Exercise #4 with Flat Parallelism
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Three-level parallelism (0)

Exposing Vector Level Parallelism
I Optional third level in the hierarchy: ThreadVectorRange

I Can be used for parallel for, parallel reduce, or
parallel scan.

I Maps to vectorizable loop on CPUs or (sub-)warp level
parallelism on GPUs.

I Enabled with a runtime vector length argument to
TeamPolicy

I There is no explicit access to a vector lane ID.

I Depending on the backend the full global parallel region has
active vector lanes.

I TeamVectorRange uses both thread and vector parallelism.
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Three-level parallelism (1)
Anatomy of nested parallelism:

parallel_outer("Label",

TeamPolicy <>(numberOfTeams , teamSize , vectorLength),

KOKKOS_LAMBDA (const member_type & teamMember [ , . . . ] ) {

/* beginning of outer body */

parallel_middle(

TeamThreadRange(teamMember , thisTeamsRangeSize),

[=] (const int indexWithinBatch [ , . . . ] ) {

/* begin middle body */

parallel_inner(

ThreadVectorRange(teamMember , thisVectorRangeSize),

[=] (const int indexVectorRange [ , . . . ] ) {

/* inner body */

} [ , . . . . ) ;
/∗ end midd le body ∗/

}[, ...] ) ;
p a r a l l e l m i d d l e (
TeamVectorRange ( teamMember , someSize ) ,

[=] ( con s t i n t indexTeamVector [ , . . . ] ) {
/∗ ne s t ed body ∗/

} [ , . . . ] ) ;
/∗ end o f ou t e r body ∗/

}[, ...] ) ;
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Sum sanity checks (0)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", RangePolicy <>(0, numberOfThreads),

KOKKOS_LAMBDA (size_t& index , int& partialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

partialSum += thisThreadsSum;

}, totalSum );

totalSum = numberOfThreads * 10



June 15, 2021 117/172

Sum sanity checks (0)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", RangePolicy <>(0, numberOfThreads),

KOKKOS_LAMBDA (size_t& index , int& partialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

partialSum += thisThreadsSum;

}, totalSum );

totalSum = numberOfThreads * 10



June 15, 2021 118/172

Sum sanity checks (1)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {
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}

partialSum += thisThreadsSum;
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totalSum = numberOfTeams * team size * 10
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Sum sanity checks (2)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {

int thisTeamsSum = 0;

parallel_reduce(TeamThreadRange(teamMember , team_size),

[=] (const int index , int& thisTeamsPartialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

thisTeamsPartialSum += thisThreadsSum;

}, thisTeamsSum );

partialSum += thisTeamsSum;

}, totalSum );

totalSum = numberOfTeams * team size * team size * 10
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Restricting Execution: single pattern

The single pattern can be used to restrict execution

I Like parallel patterns it takes a policy, a lambda, and
optionally a broadcast argument.

I Two policies: PerTeam and PerThread.

I Equivalent to OpenMP single directive with nowait

// Restrict to once per thread

single(PerThread(teamMember), [&] () {

// code

});

// Restrict to once per team with broadcast

int broadcastedValue = 0;

single(PerTeam(teamMember), [&] (int& broadcastedValue_local) {

broadcastedValue_local = special value assigned by one;

}, broadcastedValue );

// Now everyone has the special value
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Exercise: TeamVectorLoop

The previous example was extended with an outer loop over
“Elements” to expose a third natural layer of parallelism.

Details:

I Location: Exercises/team vector loop/

I Use the single policy instead of checking team rank

I Parallelize all three loop levels.

Things to try:

I Vary problem size and number of rows (-S ...; -N ...)

I Compare behavior with TeamPolicy Exercise for very non-square
matrices

I Compare behavior of CPU vs GPU
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Exercise: TeamVectorLoop
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Section Summary

I Hierarchical work can be parallelized via hierarchical
parallelism.

I Hierarchical parallelism is leveraged using thread teams
launched with a TeamPolicy.

I Team “worksets” are processed by a team in nested
parallel for (or reduce or scan) calls with a
TeamThreadRange, ThreadVectorRange, and
TeamVectorRange policy.

I Execution can be restricted to a subset of the team with the
single pattern using either a PerTeam or PerThread policy.
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Kokkos Tools
Leveraging Kokkos’ built-in instrumentation.

Learning objectives:

I The need for Kokkos aware tools.

I How instrumentation helps.

I Simple profiling tools.

I Simple debugging tools.
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Profiling C++ Code

Output from NVIDIA NVProf for Trilinos Tpetra

What are those Kernels doing?
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Why is it so bad?

Generic code obscures what is happening from the tools
Historically a lot of profiling tools are coming from a Fortran and C
world:

I Focused on functions and variables
I C++ has a lot of other concepts:

I Classes with member functions
I Inheritance
I Template Metaprogramming

I Abstraction Models (Generic Programming) obscure things
I From a profiler perspective interesting stuff happens in the

abstraction layer (e.g. #pragma omp parallel)
I Symbol names get really complex due to deep template layers
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Instrumentation to the Rescue

Instrumentation enables context information to reach tools.

Most profiling tools have an instrumentation interface

I E.g. nvtx for NVIDIA, ITT for Intel.

I Allows to name regions

I Sometimes can mark up memory operations.

KokkosP

Kokkos has its own instrumentation interface KokkosP, which can
be used to write tools.

I Knows about parallel dispatch

I Knows about allocations, deallocations and deep copy

I Provides region markers

I Leverages naming information (kernels, Views)



June 15, 2021 127/172

Instrumentation to the Rescue

Instrumentation enables context information to reach tools.

Most profiling tools have an instrumentation interface

I E.g. nvtx for NVIDIA, ITT for Intel.

I Allows to name regions

I Sometimes can mark up memory operations.

KokkosP

Kokkos has its own instrumentation interface KokkosP, which can
be used to write tools.

I Knows about parallel dispatch

I Knows about allocations, deallocations and deep copy

I Provides region markers

I Leverages naming information (kernels, Views)



June 15, 2021 128/172

The Kokkos Tools

There are two components to Kokkos Tools: the KokkosP
instrumentation interface and the actual Tools.

KokkosP Interface

I The internal instrumentation layer of Kokkos.

I Always available even in release builds.

I Zero overhead if no tool is loaded.

Kokkos Tools

I Tools leveraging the KokkosP instrumentation layer.
I Are loaded at runtime by Kokkos.

I Set KOKKOS PROFILE LIBRARY environment variable to load a
shared library.

I Compile tools into the executable and use the API callback
setting mechanism.
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How does it Work

Download tools from
https://github.com/kokkos/kokkos-tools

I Tools are largely independent of the Kokkos configuration
I May need to use the same C++ standard library.
I Use the same tool for CUDA and OpenMP code for example.

I Simple makefiles that are independent of Kokkos config.

I In most cases just type make in the specific tool directory.

Loading Tools:

I Set KOKKOS PROFILE LIBRARY environment variable to the
full path to the shared library of the tool.

I Kokkos dynamically loads symbols from the library during
initialize and fills function pointers.

I If no tool is loaded the overhead is a function pointer
comparison to nullptr.

https://github.com/kokkos/kokkos-tools
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An Example Code

View <double*> a("A",N);

View <double*, HostSpace > h_a = create_mirror_view(a);

Profiling :: pushRegion("Setup");

parallel_for("Init_A",RangePolicy <h_exec_t >(0,N),

KOKKOS_LAMBDA(int i) { h_a(i) = i; });

deep_copy(a,h_a);

Profiling :: popRegion ();

Profiling :: pushRegion("Iterate");

for(int r=0; r<10; r++) {

View <double*> tmp("Tmp",N);

parallel_scan("K_1",RangePolicy <exec_t >(0,N),

KOKKOS_LAMBDA(int i, double& lsum , bool f) {

if(f) tmp(i) = lsum;

lsum += a(i);

});

double sum;

parallel_reduce("K_2",N, KOKKOS_LAMBDA(int i, double& lsum) {

lsum += tmp(i);

},sum);

}

Profiling :: popRegion ();
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An Example Code: Nvprof
Output of: nvprof ./test.cuda

Lets make one larger:
_ZN6Kokkos4Impl33cuda_parallel_launch_local_memoryINS0

_14ParallelReduceINS0_18CudaFunctorAdapterIZ4mainEUliRdE

_NS_11RangePolicyIJNS_4CudaEEEEdvEES8_NS_11InvalidTypeES7_EEEEvT_

And demangled:
void Kokkos ::Impl:: cuda_parallel_launch_local_memory

<Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter

<main ::{ lambda(int , double &)#1} , Kokkos :: RangePolicy <Kokkos ::Cuda >,

double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy > >

(Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter <

main ::{ lambda(int , double &)#1}, Kokkos :: RangePolicy <Kokkos ::Cuda >,

double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy >)
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An Example Code

Aaa this is horrifying can’t we do better??

Lets use SimpleKernelTimer from Kokkos Tools:

I Simple tool producing a summary similar to nvprof

I Good way to get a rough overview of whats going on

I Writes a file HOSTNAME-PROCESSID.dat per process

I Use the reader accompanying the tool to read the data

Usage:

git clone git@github.com:kokkos/kokkos -tools

cd kokkos -tools/profiling/simple_kernel_timer

make

export KOKKOS_PROFILE_LIBRARY=${PWD}/ kp_kernel_timer.so

export PATH=${PATH}:${PWD}

cd ${WORKDIR}

./text.cuda

kp_reader *.dat
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An Example Code
Output from SimpleKernelTimer:

Will introduce Regions later.

Kernel Naming

Naming Kernels avoid seeing confusing Profiler output!
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Revisiting Tpetra

Lets look at Tpetra again with the Simple Kernel Timer Loaded:

At the top we get Region output:
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Revisiting Tpetra

Then we get kernel output:
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Memory Utilization

Understanding MemorySpace Utilization is critical

Three simple tools for understanding memory utilization:

I MemoryHighWaterMark: just the maximum utilization for
each memory space.

I MemoryUsage: Timeline of memory usage.
I MemoryEvents: allocation, deallocation and deep copy.

I Name, Memory Space, Pointer, Size
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Push/Pop Regions

Adding region markers to capture more code structure
Region Markers are helpful to:

I Find where time is spent outside of kernels.

I Group Kernels which belong together.
I Structure code profiles.

I For example bracket setup or solve phase.

Simple Push/Pop interface:

Kokkos :: Profiling :: pushRegion("Label");

...

Kokkos :: Profiling :: popRegion ();
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Space Time Stack

The simplest tool to leverage regions is the Space Time Stack:

I Bottom Up and Top Down data representation

I Can do MPI aggregation if compiled with MPI support

I Also aggregates memory utilization info.
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The Delayed Error Problem

Non-Blocking Dispatch implies asynchronous error reporting!

Profiling :: pushRegion("Iterate");

for(int r=0; r<10; r++) {

parallel_for("K_1" ,2*N, KOKKOS_LAMBDA(int i) {a(i) = i;});

printf("Passed point A\n");

double sum;

parallel_reduce("K_2",N, KOKKOS_LAMBDA(int i, double& lsum) {

lsum += a(i); },sum);

}

Profiling :: popRegion ();

Output of the run:

./test.cuda

Passed point A

terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaStreamSynchronize(m_stream) error( cudaErrorIllegalAddress ):

an illegal memory access was encountered

Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :312

Traceback functionality not available

Aborted (core dumped)
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Kernel Logger for Debugging

Debugging with Tools

Kokkos Tools can be used to implement Debugging functionality.

The KernelLogger is a tool to localize errors and check the actual
runtime flow of a code.

I As other tools it inserts fences - which check for errors.

I Prints out Kokkos operations as they happen.

Output from the above test case with KernelLogger:
KokkosP: Allocate <Cuda > name: A pointer: 0x7f598b800000 size: 8000000

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 0

KokkosP: Kokkos ::View:: initialization [A]

KokkosP: Execution of kernel 0 is completed.

KokkosP: Entering profiling region: Iterate

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 1

KokkosP: Iterate

KokkosP: K_1

terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaDeviceSynchronize () error( cudaErrorIllegalAddress ): an illegal memory access was encountered /ascldap/users/crtrott/Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :143

Traceback functionality not available



June 15, 2021 140/172

Kernel Logger for Debugging

Debugging with Tools

Kokkos Tools can be used to implement Debugging functionality.

The KernelLogger is a tool to localize errors and check the actual
runtime flow of a code.

I As other tools it inserts fences - which check for errors.

I Prints out Kokkos operations as they happen.

Output from the above test case with KernelLogger:
KokkosP: Allocate <Cuda > name: A pointer: 0x7f598b800000 size: 8000000

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 0

KokkosP: Kokkos ::View:: initialization [A]

KokkosP: Execution of kernel 0 is completed.

KokkosP: Entering profiling region: Iterate

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 1

KokkosP: Iterate

KokkosP: K_1

terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaDeviceSynchronize () error( cudaErrorIllegalAddress ): an illegal memory access was encountered /ascldap/users/crtrott/Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :143

Traceback functionality not available



June 15, 2021 140/172

Kernel Logger for Debugging

Debugging with Tools

Kokkos Tools can be used to implement Debugging functionality.

The KernelLogger is a tool to localize errors and check the actual
runtime flow of a code.

I As other tools it inserts fences - which check for errors.

I Prints out Kokkos operations as they happen.

Output from the above test case with KernelLogger:
KokkosP: Allocate <Cuda > name: A pointer: 0x7f598b800000 size: 8000000

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 0

KokkosP: Kokkos ::View:: initialization [A]

KokkosP: Execution of kernel 0 is completed.

KokkosP: Entering profiling region: Iterate

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 1

KokkosP: Iterate

KokkosP: K_1

terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaDeviceSynchronize () error( cudaErrorIllegalAddress ): an illegal memory access was encountered /ascldap/users/crtrott/Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :143

Traceback functionality not available



June 15, 2021 141/172

The Standard Profiling Approach

The standard Kokkos profiling approach

Understand Kokkos Utilization (SimpleKernelTimer)

I Check how much time in kernels

I Identify HotSpot Kernels

Run Memory Analysis (MemoryEvents)

I Are there many allocations/deallocations - 5000/s is OK.

I Identify temporary allocations which might be able to hoisted

Identify Serial Code Regions (SpaceTimeStack)

I Add Profiling Regions

I Find Regions with low fraction of time spend in Kernels

Dive into individual Kernels

I Use connector tools (next subsection) to analyze kernels.

I E.g. use roof line analysis to find underperforming code.
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Exercise - Terrible MiniMD

Analyse a MiniMD variant with a serious performance issue.

Details:

I Location: Exercises/tools minimd/

I Use standard Profiling Approach.

I Find the code location which causes the performance issue.

I Run with miniMD.exe -s 20

What should happen:

I Performance should be

I About 50% of time in a Force compute kernel

I About 25% in neighbor list creation
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Basic Tool Summary

I Kokkos Tools provide an instrumentation interface KokkosP
and Tools to leverage it.

I The interface is always available - even in release builds.

I Zero overhead if no tool is loaded during the run.

I Dynamically load a tool via setting
KOKKOS PROFILE LIBRARY environment variable.

I Set callbacks directly in code for tools compiled into the
executable.
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Kokkos Kernels: performance
portable BLAS, sparse, dense
and graph algorithms

Topics:

I BLAS kernels.

I SPARSE math kernels.
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BLAS and LAPACK

Learning objectives:

I Motivation for BLAS/LAPACK functions

I Algorithm Specialization for Applications

I Calling BLAS/LAPACK functions
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KokkosKernels BLAS/LAPACK Interface

KokkosKernels Vendor Libraries
I A single interface to vendor

BLAS libraries on
heterogenous computing
platforms

I Support user-defined data
type e.g., Automatic
Differentiation, Ensemble,
SIMD, types with Kokkos
native implementation

I Customized performance
solution for certain problem
sizes

I Exploring new performance
oriented interfaces

I A user needs to write a
different function interface
for different computing
platforms e.g., MKL vs.
CUBLAS

I Built-in real/complex data
types and column/row
major data layouts are only
supported

I Code is highly optimized; in
practice, higher
performance is obtained
from larger problem sizes
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KokkosKernels BLAS/LAPACK Interface

Algorithm Specialization for Applications
I Dot-based GEMM

I GEMM is used for orthogonalizing Krylov multi-vectors (long
skinny matrix)

I This particular problem shape does not perform well on
CUBLAS

I Algorithm is specialized for this shape performing multiple dot
products instead of running standard GEMM algorithms

I Compact Batched BLAS
I Application wants to solve many instances of tiny square block

dense matrices; e.g., block dimensions of 3, 5, 7, 9, 11, etc.
I Difficult to effectivley use wide vector length such as AVX512

for this small problem size
I A pack of block matrices are inter-leaved and solved

simultaneously using vector instructions
I Code is trivially vectorized 100% for the applied BLAS and

LAPACK operations
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KokkosKernels BLAS/LAPACK Interface

Algorithm Specialization for Applications
I Extended Blas 1 interface: see axpby, update (a, c, b, y, g, z)

I y [i ] = g ∗ z [i ] + b ∗ y [i ] + a ∗ x [i ]
I Trilinos Tpetra interface used in Belos iterative solvers

I See the wiki page for complete list of functions
I https://github.com/kokkos/kokkos-kernels/wiki

KokkosKernels interacts with application teams and
provides custom performance solutions for their needs
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KokkosKernels BLAS/LAPACK Interface

Recall the Kokkos Inner Product exercise:

I Inner product < y ,A ∗ x >
I y is Nx1, A is NxM,

x is Mx1

I Early exercise code looked
like
double result = 0;

Kokkos :: parallel_reduce("yAz", N,

KOKKOS_LAMBDA (int j, double &update) {

double temp2 = 0;

for (int i = 0; i < M; ++i) {

temp2 += A(j, i) * x(i);

}

update += y(j) * temp2;

}, result );
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KokkosKernels BLAS/LAPACK Interface

This can be naturally expressed as two BLAS operations:
In Matlab notation:

// 1. gemv:

Ytmp = A * x

// 2. dot:

result = y’*Ytmp

  

Different function signatures and APIs are used by different vendors

e.g., on Cuda: cublasDgemv and cublasDdot
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KokkosKernels BLAS Interface: GEMV

KokkosBlas : : gemv ( mode , a lpha , A , x , beta , y ) ;

Interface:
I mode [in]

I ”N” for non-transpose
I ”T” for transpose
I ”C” for conjugate transpose.

I alpha [in] Input coefficient of A*x

I A [in] Input matrix, as a 2-D Kokkos::View

I x [in] Input vector, as a 1-D Kokkos::View

I beta [in] Input coefficient of y

I y [in/out] Output vector, as a nonconst 1-D Kokkos::View
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KokkosKernels BLAS Interface: DOT

r e s u l t = KokkosBlas : : dot ( x , y ) ;

Single Interface:

I x [in] Input vector, as a 1-D Kokkos::View

I y [in] Input vector, as a 1-D Kokkos::View

I result [out] Scalar result on host

I This interface calls Kokkos::fence on all execution spaces

KokkosBlas : : dot ( r , x , y ) ;

Single and Multi-vector Interface:

I x [in] Input (multi-)vector, as a 1-D or 2-D Kokkos::View

I y [in] Input (multi-)vector, as a 1-D or 2-D Kokkos::View

I r [in/out] Output result, as a rank-0 or 1-D Kokkos::View

I This interface is non-blocking.
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KokkosKernels BLAS/LAPACK Interface

KokkosKernels: User implementation:

Kokkos : : View<d o u b l e∗> tmp ( ”tmp” , N) ;

KokkosBlas : : gemv ( ”N” , a lpha , A, x , beta ,
tmp ) ;

d o u b l e r e s u l t = 0 ;

r e s u l t = KokkosBlas : : dot ( y , tmp ) ;

d o u b l e r e s u l t = 0 ;
Kokkos : : p a r a l l e l r e d u c e ( ”yAx” , N,
KOKKOS LAMBDA ( i n t j , d o u b l e &

update ) {
d o u b l e temp2 = 0 ;

f o r ( i n t i = 0 ; i < M; ++i ) {
temp2 += A( j , i ) ∗ x ( i ) ;

}
update += y ( j ) ∗ temp2 ;

} , r e s u l t ) ;

I Uses two BLAS functions

I Optionally interface to

optimized vendor libraries

I For certain matrix shapes may

choose specialized code path for

performance

I Exploits a single level of

parallelism only i.e., internal

temp2 is summed sequentially

I Matrix-vector multiplication and

dot product are fused in a single

kernel

Related exercise available at: Exercises/kokkoskernels/InnerProduct
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Summary

Summary: BLAS/LAPACK
I Single interface for heterogeneous computing platforms

I Optimized vendor library interface when it is available

I Specialization of algorithms corresponding to application needs

I Native implementation supports strided data layout of a matrix
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Exercise Inner Product Using Kokkos Kernels

I Location: Exercises/kokkoskernels/InnerProduct/Begin/

I Assignment: We return to the Inner Product example with two
separate sub-exercises:

1. Use Kokkos Kernels BLAS routines (gemv, dot) to compute
the inner product

2. Use Kokkos Kernels team-level BLAS routines (dot) within the
TeamPolicy implementation within the matrix-vector product
calculation

I Compile and run on CPU, GPU; test with NVIDIA’s cuBLAS tpl
enabled
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Exercise Inner Product Using Kokkos Kernels

For convenience, use the provided script to install KokkosKernels
and generate a Makefile for the exercise

./ run_installlibs_cmake.sh

make -j

Update path and configuration variables in the script as needed
based on your based on your setup:

I KOKKOS PATH: Point to your Kokkos source directory

I KOKKOSKERNELS PATH: KokkosKernels source directory

I KOKKOS DEVICES: Enabled execution spaces

I TPLS: Blank by default, optionally set to cublas with Cuda builds

Run exercise
./ innerproduct.exe -S 26

# Note the warnings , set appropriate environment variables

I Vary problem size: -S #

I Vary number of rows: -N #

I Vary repeats: -nrepeat #
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Sparse Linear Algebra
Sparse linear algebra data structures and functions.

Learning objectives:

I Key characteristics algorithms

I Containers: CrsMatrix, StaticCrsGraph, Vector

I SpMV

I SpADD

I SpGEMM
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Why do we need this?

Support for important class of applications

I Representation of choices for discrete PDE systems (FEM,
FD, CVFEM, ...)

I Natural use for network representation
I Electrical grid, electronic circuit
I Social network

Unique format supported: Compressed row sparse

Sparse matrices can be stored in various format, currently only Crs
format is fully supported, BlockCrs is partially supported
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Algorithmic characteristics

Constraints from Crs format

I hard to optimize memory access patterns
I often multi-pass algorithms required

1. compute storage
2. compute column index and actual values

I typically algorithms can be split in symbolic and numeric
phases

Symbolic/Numeric split

While extremely useful for reuse it is potentially slower for single
use case depending on implementation
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KokkosKernels Handle

Handle: hiding important details!
I What the handles does for you:

I stores user parameters
I keeps temporary data needed in numeric of solve/apply phases
I cleans up temporary data at destruction
I contains kernel specific ”sub-handle”
I specifies required data types

I Usage: KokkosKernels::Experimental::

KokkosKernelsHandle<size type,

index type,

scalar type,

ExecutionSpace,

TempMemSpace,

PermMemSpace>()
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Containers

One dense structure:

I View (of rank 1): represents a ”vector”

I View (of rank 2): represents a ”multi-vector”

Two sparse structures:

I StaticCrsGraph: encodes the sparsity pattern in row map

and entries

I CrsMatrix: contains a StaticCrsGraph and values

Example:
example/wiki/sparse/KokkosSparse wiki crsmatrix.cpp
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Sparse kernels interfaces

Two interfaces for one kernel?

1. Simplified interface
I uses high level containers
I reduced number of parameters and templates
I allocates memory

2. Expert interface
I uses low level container (i.e. views)
I allows for finer memory management

Simplified/Expert interface

For clarity we will focus on the simplified interface in the rest of
the lecture
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SpMV

SpMV: a mixed sparse/dense kernel
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I Computes: y = β ∗ y + α ∗ A ∗ x
I Output is a dense vector

I single pass algorithm since no CrsGraph needs to be computed
I good amount of parallelism exploitable

I Usage:
KokkosSparse::spmv(mode, alpha, A, x, beta, y);

I Example:
example/wiki/sparse/KokkosSparse wiki spmv.cpp
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SpADD

SpADD: Sparse Matrix Addition
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I Computes: C = αA + βB given A and B two CrsMatrices

I Sorted inputs speeds-up the kernel and reduces memory
consumption

I Usage:
KokkosSparse::spadd symbolic(handle, A, B, C);

KokkosSparse::spadd numeric(handle, alpha, A,

beta, B, C);

I Example:
example/wiki/sparse/KokkosSparse wiki spadd.cpp
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SpGEMM

SpGEMM: Sparse General Matrix Matrix Multiply

I Compute A× B = C for given sparse matrices A and B 1 2
3 4

5

×
 6 7

8 9
10 11

 =

 6 27 22
24 27 40 41
30 35


I Sparsity structure of C is not known in advance!

I We have a two-phase implementation:
I This allows determining the sparsity of C efficiently
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SpGEMM

SpGEMM: Sparse General Matrix Matrix Multiply

I Symbolic phase:
I KokkosSparse::spgemm symbolic(handle,

A, isTrnspsdA, B, isTrnspsdB, C);
I determines number of nonzeros in each row of C and
I allocates memory for column indices and values of the nonzeros

I Numeric phase
I KokkosSparse::spgemm numeric(handle,

A, isTrnspsdA, B, isTrnspsdB, C);
I computes column indices and values of the nonzeros of C

I Example
example/wiki/sparse/KokkosSparse wiki spgemm.cpp
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SpGEMM

SpGEMM: Sparse General Matrix Matrix Multiply

I We follow Gustavson’s algorithm:
for each row index i ← 0 to nrowsA do

for each column index j ∈ A(i , :) do
//accumulate partial row results

C (i , :)← C (i , :) + A(i , j)B(j , :)

I Our implementation exploits hierarchical paralelism
I Teams are assigned contiguous row chunks in A
I Threads are assigned individual rows of A
I Vector lanes are assigned the nonzeros of rows of B
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SpGEMM

SpGEMM: Sparse General Matrix Matrix Multiply

I We follow Gustavson’s algorithm:
for each row index i ← 0 to nrowsA do

for each column index j ∈ A(i , :) do
//accumulate partial row results

C (i , :)← C (i , :) + A(i , j)B(j , :)
I Our thread-scalable hashmap accumulator implementation

I is used in both symbolic and numeric phases
I supports both sparse and dense accumulators
I has a two-level structure: Level-1 (L1) and Level-2 (L2)

I L1 hashmap lives in the fast shared memory
I L2 hashmap is created only if L1 hashmap runs out of memory
I L2 hashmap lives in the large global memory

I For more details see: M. Deveci, C. Trott, S. Rajamanickam,

”Multithreaded sparse matrix-matrix multiplication for many-core and

GPU architectures”, Parallel Computing 78, 33-46, 2018.
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Summary SpLA

Summary: Sparse Linear Algebra

I Main difficulties: finding sparsity patterns and memory access

I Containers: View, StaticCrsGraph and CrsMatrix

I Kernels: SpMV, SpADD and SpGEMM
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What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Advanced data structures.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I All Tools for Profiling, Debugging and Tuning.

I All Math Kernels (Batched BLAS, Graphs, Sparse Solvers.
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The Kokkos Lectures

The Kokkos Lectures

Join The Kokkos Lectures for all of those and more in-depth
explanations or do them on your own.

I Module 1: Introduction, Building and Parallel Dispatch

I Module 2: Views and Spaces

I Module 3: Data Structures + MultiDimensional Loops

I Module 4: Hierarchical Parallelism

I Module 5: Tasking, Streams and SIMD

I Module 6: Internode: MPI and PGAS

I Module 7: Tools: Profiling, Tuning and Debugging

I Module 8: Kernels: Sparse and Dense Linear Algebra
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Find More

Online Resources:
I https://github.com/kokkos:

I Primary Kokkos GitHub Organization

I https://github.com/kokkos/kokkos-tutorials/wiki/
Kokkos-Lecture-Series:
I Slides, recording and Q&A for the Full Lectures

I https://github.com/kokkos/kokkos/wiki:
I Wiki including API reference

I https://kokkosteam.slack.com:
I Slack channel for Kokkos.
I Please join: fastest way to get your questions answered.
I Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos/wiki
https://kokkosteam.slack.com

