
Advanced MPI
Slides Available at https://anl.box.com/v/yguo-isc-tutorial-2021

Pavan Balaji
Facebook

Email: pavanbalaji.work@gmail.com
Web: https://pavanbalaji.github.io/

Torsten Hoefler
ETH Zurich

Email: htor@inf.ethz.ch
Web: http://htor.inf.ethz.ch/

Antonio Pena
Barcelona Supercomputing Center

Email: antonio.pena@bsc.es
Web: https://www.bsc.es/pena-antonio

Yanfei Guo
Argonne National Laboratory

Email: yguo@anl.gov
Web: https://www.mcs.anl.gov/~yguo/

https://anl.box.com/v/yguo-isc-tutorial-2021
mailto:pavanbalaji.work@gmail.com
https://pavanbalaji.github.io/
mailto:htor@inf.ethz.ch
http://htor.inf.ethz.ch/
mailto:antonio.pena@bsc.es
https://www.bsc.es/pena-antonio
mailto:yguo@anl.gov
https://www.mcs.anl.gov/~yguo/


About the Speakers

§ Pavan Balaji: Applied Research Scientist, Facebook

§ Torsten Hoefler: Professor, ETH Zurich

§ Antonio Pena: Senior Researcher, Barcelona Supercomputing 
Center

§ Yanfei Guo: Assistant Computer Scientist, Argonne National 
Laboratory 

§ We are deeply involved in MPI standardization (in the MPI 
Forum) and in MPI implementation
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What this tutorial will cover

§ Some advanced topics in MPI
– Not a complete set of MPI features

– Will not include all details of each feature

– Idea is to give you a feel of the features so you can start using them in your 
applications

§ One-sided Communication (Remote Memory Access): MPI-2 and MPI-3

§ Hybrid Programming with Threads, Shared Memory, and Accelerators 
(MPI-2 and MPI-3)

§ Nonblocking Collective Communication (MPI-3)

§ Topology-aware Communication (MPI-1 and MPI-2.2)

§ New features in MPI-4 (might skip depending on time)
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What is MPI?
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What is MPI?

§ MPI: Message Passing Interface
– The MPI Forum organized in 1992 with broad participation by:

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
• Portability library writers: PVM, p4
• Users: application scientists and library writers
• MPI-1 finished in 18 months

– Incorporates the best ideas in a “standard” way
• Each function takes fixed arguments
• Each function has fixed semantics

– Standardizes what the MPI implementation provides and what the 
application can and cannot expect

– Each system can implement it differently as long as the semantics match

§ MPI is not…
– a language or compiler specification
– a specific implementation or product
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MPI-1

§ MPI-1 supports the classical message-passing programming 
model: basic point-to-point communication, collectives, 
datatypes, etc

§ MPI-1 was defined (1994) by a broadly based group of parallel 
computer vendors, computer scientists, and applications 
developers.
– 2-year intensive process

§ Implementations appeared quickly and now MPI is taken for 
granted as vendor-supported software on any parallel 
machine.

§ Free, portable implementations exist for clusters and other 
environments (MPICH, Open MPI)
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Following MPI Standards

§ MPI-2 was released in 1997
– Several additional features including MPI + threads, MPI-I/O, remote memory 

access functionality and many others

§ MPI-2.1 (2008) and MPI-2.2 (2009) were released with some corrections 
to the standard and small features

§ MPI-3 (2012) added several new features to MPI

§ MPI-3.1 (2015) is the latest version of the standard with minor corrections 
and features

§ The Standard itself:
– at http://www.mpi-forum.org

– All MPI official releases, in both postscript and HTML

§ Other information on Web:
– at http://www.mcs.anl.gov/mpi

– pointers to lots of material including tutorials, a FAQ, other MPI pages
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Overview of New Features in MPI-3
§ Major new features

– Nonblocking collectives
– Neighborhood collectives
– Improved one-sided communication interface
– Tools interface
– Fortran 2008 bindings

§ Other new features
– Matching Probe and Recv for thread-safe probe and receive 
– Noncollective communicator creation function
– “const” correct C bindings
– Comm_split_type function
– Nonblocking Comm_dup
– Type_create_hindexed_block function

§ C++ bindings removed
§ Previously deprecated functions removed
§ MPI 3.1 added nonblocking collective I/O functions
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Status of MPI-3.1 Implementations
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NBC ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Nbr. Coll. ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔

RMA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ (*) ✔ ✔ ✔ ✔ Q2 ‘18

Shr. mem ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q1 ‘18

MPI_T ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ * ✔ ✔ ✔ ✔ Q2 ‘18

Comm-create 
group ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ * ✔ ✔ ✔ ✔ ✔

F08 Bindings ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✔ ✔ ✔ ✔ Q2 ‘18

New Dtypes ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Large Counts ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

MProbe ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q1 ‘18

NBC I/O ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✔ ✔ ✘ ✘ * ✔ ✘ ✔ Q3 ‘18

1 Open Source but unsupported 2 No MPI_T variables exposed * Under development (*) Partly done

Release dates are estimates; subject to change at any time “✘” indicates no publicly announced plan to implement/support that feature
Platform-specific restrictions might apply to the supported features
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Important considerations while using MPI

§ All parallelism is explicit: the programmer is responsible for 
correctly identifying parallelism and implementing parallel 
algorithms using MPI constructs
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Web Pointers

§ MPI standard : http://www.mpi-forum.org/docs/docs.html

§ MPI Forum : http://www.mpi-forum.org/

§ MPI implementations: 
– MPICH : http://www.mpich.org

– MVAPICH : http://mvapich.cse.ohio-state.edu/

– Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI: https://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx

– Open MPI : http://www.open-mpi.org/

– IBM MPI, Cray MPI, HP MPI, TH MPI, …

§ Several MPI tutorials can be found on the web
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Latest MPI 3.1 Standard in Book Form

Available from amazon.com
http://www.amazon.com/dp/B015CJ42CU/
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Tutorial Books on MPI

13

Basic MPI Advanced MPI, including MPI-3
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Book on Parallel Programming Models
Edited by Pavan Balaji
• MPI: W. Gropp and R. Thakur
• GASNet: P. Hargrove
• OpenSHMEM: J. Kuehn and S. Poole
• UPC: K. Yelick and Y. Zheng
• Global Arrays: S. Krishnamoorthy, J. Daily, A. Vishnu, 

and B. Palmer
• Chapel: B. Chamberlain
• Charm++: L. Kale, N. Jain, and J. Lifflander
• ADLB: E. Lusk, R. Butler, and S. Pieper
• Scioto: J. Dinan
• SWIFT: T. Armstrong, J. M. Wozniak, M. Wilde, and I. 

Foster
• CnC: K. Knobe, M. Burke, and F. Schlimbach
• OpenMP: B. Chapman, D. Eachempati, and S. 

Chandrasekaran
• Cilk Plus: A. Robison and C. Leiserson
• Intel TBB: A. Kukanov
• CUDA: W. Hwu and D. Kirk
• OpenCL: T. Mattson

https://mitpress.mit.edu/books/programming-models-
parallel-computing
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Approach in this Tutorial

§ Example driven
– A few running examples used throughout the tutorial

– Other smaller examples used to illustrate specific features
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Access to example materials
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Running Example: Stencil
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Running Example: Regular Mesh Algorithms

§ Many scientific applications involve the solution of partial 
differential equations (PDEs)

§ Many algorithms for approximating the solution of PDEs
rely on forming a set of difference equations
– Finite difference, finite elements, finite volume

§ The exact form of the differential equations depends on 
the particular method
– From the point of view of parallel programming for these 

algorithms, the operations are the same

§ Five-point stencil is a popular approximation solution
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The Global Data Structure

§ Each circle is a mesh point

§ Difference equation evaluated at 
each point involves the four 
neighbors

§ The red “plus” is called the 
method’s stencil

§ Good numerical algorithms form a 
matrix equation Au=f; solving this 
requires computing Bv, where B is 
a matrix derived from A. These 
evaluations involve computations 
with the neighbors on the mesh.
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The Global Data Structure

§ Each circle is a mesh point

§ Difference equation evaluated at 
each point involves the four 
neighbors

§ The red “plus” is called the 
method’s stencil

§ Good numerical algorithms form a 
matrix equation Au=f; solving this 
requires computing Bv, where B is 
a matrix derived from A. These 
evaluations involve computations 
with the neighbors on the mesh.

§ Decompose mesh into equal sized 
(work) pieces
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Necessary Data Transfers
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The Local Data Structure

§ Each process has its local “patch” of the global array
– “bx” and “by” are the sizes of the local array

– Always allocate a halo around the patch

– Array allocated of size (bx+2)x(by+2)

bx

by
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Necessary Data Transfers
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Necessary Data Transfers

§ Provide access to remote data through a halo exchange     
(5 point stencil)
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Example: Stencil with Nonblocking Send/recv

§ nonblocking_p2p/stencil.c

§ Simple stencil code using nonblocking point-to-point 
operations
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Running Example:
Block Sparse Matrix Multiplication
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NWChem [1]

§ High performance computational chemistry 
application suite

§ Quantum level simulation of molecular systems
– Very expensive in computation and data 

movement, so is used for small systems
– Larger systems use molecular level simulations

§ Composed of many simulation capabilities
– Molecular Electronic Structure
– Quantum Mechanics/Molecular Mechanics
– Pseudo potential Plane-Wave Electronic Structure
– Molecular Dynamics

§ Very large code base
– 4M LOC; Total investment of ~200M $ to date

[1] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, 
"NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations" Comput. Phys. Commun. 181, 
1477 (2010)

Water (H2O)21

Carbon C20
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NWChem Communication Runtime

ARMCI  : Communication interface for RMA[3]

Global Arrays [2]

[2] http://hpc.pnl.gov/globalarrays
[3] http://hpc.pnl.gov/armci

ARMCI native ports

IB DMMAP …

MPI RMA

ARMCI-MPI

Abstractions for distributed arrays

Global Address Space

Physically distributed to different processes 

Hidden from user
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Block Sparse Matrix Multiplication (BSPMM)

§ Computing block sparse matrix multiplication: C = 𝛼𝐴 × 𝐵 + 𝛽𝐶
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Mock figure showing 2D DGEMM with block-sparse 
computations.  In reality, NWChem uses 6D tensors.
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The Global Data Structure

§ Applications operate on large data sets that easily exceed the 
capacity of a single node

– Resource sharing across nodes becomes necessary

– “Allocate” matrices in the global address space that is physically 
distributed onto different nodes

§ In the tutorial, the first process entirely allocates all three matrices 
for simplicity
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The Parallel Approach

§ Divide to independent subblocks and distribute over processes

§ Compute dgemm of subblocks locally

§ For each 𝑐!", sum up the results of corresponding subblock multiplication
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𝒂𝟑𝟏 𝒂𝟑𝟐 𝒂𝟑𝟑

A B C

x +=

c11+=a11*b11
Skip a11*(b12)
c13+=a11*b13

rank  0

A-based parallelism
Set 𝜶=1, 𝛽=0 for simplicity, compute 𝐂 = 𝑨𝑩

c11+=a12*b21
c12+=a12*b22
Skip a12*(b23)

rank  1

𝒄𝟏𝟏 𝒄𝟏𝟐𝒃𝟏𝟏 𝒃𝟏𝟐 𝒃𝟏𝟑

𝒃𝟐𝟏 𝒃𝟐𝟐 𝒃𝟐𝟑

𝒃𝟑𝟏 𝒃𝟑𝟐 𝒃𝟑𝟑
Skip a13*(b31)
c12+=a13*b32
Skip a13*(b33)

Skip (a21)

...

...

𝒄𝟏𝟑



Example: BSPMM with full matrices

§ blocking_p2p/bspmm_simple.c

§ Simple bspmm code using blocking point-to-point operations
– Rank 0 (master) initializes all matrices and sends the entire A and B 

matrices to other processes (workers)

– Each worker computes different blocks and sends the local matrix C to 
master

– Master sums up the received results
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C
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C1

Compute C0

Compute C1
Sum C=C0+C1



MPI One-sided Communication
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One-sided Communication

§ The basic idea of one-sided communication models is to 
decouple data movement with process synchronization
– Should be able to move data without requiring that the remote 

process synchronize

– Each process exposes a part of its memory to other processes

– Other processes can directly read from or write to this memory

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory

Remotely
Accessible
Memory

Remotely
Accessible
Memory

Remotely
Accessible 
Memory

Remotely
Accessible 
Memory

Global 
Address 

Space
Private

Memory
Private

Memory
Private

Memory
Private

Memory
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Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment
Memory
Segment
Memory
Segment

Memory
Segment
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One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment
Memory
Segment
Memory
Segment

Memory
Segment
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Comparing One-sided and Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D
E
L
A
Y

Even the 
sending 

process is 
delayed

Process 0 Process 1

PUT(data) D
E
L
A
Y

Delay in 
process 1 
does not 

affect 
process 0

GET(data)
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What we need to know in MPI RMA

§ How to create remote accessible memory?

§ Reading, Writing and Updating remote memory

§ Data Synchronization

§ Memory Model
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Creating Public Memory

§ Any memory used by a process is, by default, only locally 
accessible
– X = malloc(100);

§ Once the memory is allocated, the user has to make an 
explicit MPI call to declare a memory region as remotely 
accessible
– MPI terminology for remotely accessible memory is a “window”

– A group of processes collectively create a “window”

§ Once a memory region is declared as remotely accessible, all 
processes in the window can read/write data to this memory 
without explicitly synchronizing with the target process
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Window creation models

§ Four models exist
– MPI_WIN_ALLOCATE

• You want to create a buffer and directly make it remotely accessible

– MPI_WIN_CREATE

• You already have an allocated buffer that you would like to make 
remotely accessible

– MPI_WIN_CREATE_DYNAMIC

• You don’t have a buffer yet, but will have one in the future

• You may want to dynamically add/remove buffers to/from the window

– MPI_WIN_ALLOCATE_SHARED

• You want multiple processes on the same node share a buffer
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MPI_WIN_ALLOCATE

§ Create a remotely accessible memory region in an RMA window
– Only data exposed in a window can be accessed with RMA ops.

§ Arguments:
– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

– baseptr - pointer to exposed local data

– win            - window (handle)

41Advanced MPI, ISC21 (06/24/2021-06/25/2021)

MPI_Win_allocate(MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, void *baseptr,
MPI_Win *win)



Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */
MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in

* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;
}
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MPI_WIN_CREATE

§ Expose a region of memory in an RMA window
– Only data exposed in a window can be accessed with RMA ops.

§ Arguments:
– base - pointer to local data to expose
– size - size of local data in bytes (nonnegative integer)
– disp_unit - local unit size for displacements, in bytes (positive integer)
– info - info argument (handle)
– comm - communicator (handle)
– win             - window (handle)
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MPI_Win_create(void *base, MPI_Aint size, 
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)



Example with MPI_WIN_CREATE
int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */
a = (int *) malloc(1000*sizeof(int));
/* use private memory like you normally would */
for (int i = 0; i < 1000; i++) a[i] = i + 1;

/* collectively declare memory as remotely accessible */
MPI_Win_create(a, 1000*sizeof(int), sizeof(int), 

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);
free(a);
MPI_Finalize(); return 0;

}
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MPI_WIN_CREATE_DYNAMIC

§ Create an RMA window, to which data can later be attached
– Only data exposed in a window can be accessed with RMA ops

§ Initially “empty”
– Application can dynamically attach/detach memory to this window by 

calling MPI_Win_attach/detach

– Application can access data on this window only after a memory 
region has been attached

§ Window origin is MPI_BOTTOM
– Displacements are segment addresses relative to MPI_BOTTOM

– Must tell others the displacement after calling attach
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MPI_Win *win)



Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);
MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */
a = (int *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
for (int i = 0; i < 1000; i++) a[i] = i + 1;

/* locally declare memory as remotely accessible */
MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */
MPI_Win_detach(win, a);  free(a);
MPI_Win_free(&win);

MPI_Finalize(); return 0;
}
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Data movement

§ MPI provides ability to read, write and atomically modify data 
in remotely accessible memory regions
– MPI_PUT

– MPI_GET

– MPI_ACCUMULATE (atomic)

– MPI_GET_ACCUMULATE (atomic)

– MPI_COMPARE_AND_SWAP (atomic)

– MPI_FETCH_AND_OP (atomic)
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Data movement: Put

§ Move data from origin, to target

§ Separate data description triples for origin and target

48

Origin

MPI_Put(const void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)
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Data movement: Get

§ Move data to origin, from target

§ Separate data description triples for origin and target

49

Origin

MPI_Get(void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)
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Atomic Data Aggregation: Accumulate

§ Atomic update operation, similar to a put
– Reduces origin and target data into target buffer using op argument as 

combiner
– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …
– Predefined ops only, no user-defined operations

§ Different data layouts between
target/origin OK

– Basic type elements must match

§ Op = MPI_REPLACE
– Implements f(a,b)=b

– Atomic PUT

50

MPI_Accumulate(const void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)
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Atomic Data Aggregation: Get Accumulate

§ Atomic read-modify-write
– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …
– Predefined ops only

§ Result stored in target buffer
§ Original data stored in result buf
§ Different data layouts between

target/origin OK
– Basic type elements must match

§ Atomic get with MPI_NO_OP
§ Atomic swap with MPI_REPLACE
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MPI_Get_accumulate(const void *origin_addr,
int origin_count, MPI_Datatype origin_dtype, 
void *result_addr,int result_count,
MPI_Datatype result_dtype, int target_rank, 
MPI_Aint target_disp,int target_count, 
MPI_Datatype target_dype, MPI_Op op, MPI_Win win)
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Atomic Data Aggregation: FOP and CAS

§ FOP: Simpler version of MPI_Get_accumulate
– All buffers share a single predefined datatype

– No count argument (it’s always 1)

– Simpler interface allows hardware optimization

§ CAS: Atomic swap if target value is equal to compare value
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MPI_Compare_and_swap(const void *origin_addr,
const void *compare_addr, void *result_addr,
MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(const void *origin_addr, void *result_addr,
MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Op op, MPI_Win win)
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Ordering of Operations in MPI RMA

§ No guaranteed ordering for Put/Get operations

§ Result of concurrent Puts to the same location undefined

§ Result of Get concurrent Put/Accumulate undefined

– Can be garbage in both cases

§ Result of concurrent accumulate operations to the same location are 
defined according to the order in which the occurred

– Atomic put: Accumulate with op = MPI_REPLACE

– Atomic get: Get_accumulate with op = MPI_NO_OP

§ Accumulate operations from a given process are ordered by default

– User can tell the MPI implementation that (s)he does not require 
ordering as optimization hint

– You can ask for only the needed orderings: RAW (read-after-write), 
WAR, RAR, or WAW
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Examples with operation ordering
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Process 0 Process 1

GET_ACC (y, x+=2, P1)

ACC (x+=1, P1) x += 2

x += 1y=2 

x = 2

PUT(x=2, P1)

GET(y, x, P1)

x = 2y=1

x = 1

PUT(x=1, P1)

PUT(x=2, P1)

x = 1

x = 0

x = 2
1. Concurrent Puts: undefined

2. Concurrent Get and 
Put/Accumulates: undefined

3. Concurrent Accumulate operations 
to the same location: ordering is 
guaranteed
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RMA Synchronization Models
§ RMA data access model

– When is a process allowed to read/write remotely accessible memory?
– When is data written by process X is available for process Y to read?
– RMA synchronization models define these semantics

§ Three synchronization models provided by MPI:
– Fence (active target)
– Post-start-complete-wait (generalized active target)
– Lock/Unlock (passive target)

§ Data accesses occur within “epochs”

– Access epochs: contain a set of operations issued by an origin process
– Exposure epochs: enable remote processes to update a target’s window
– Epochs define ordering and completion semantics
– Synchronization models provide mechanisms for establishing epochs

• E.g., starting, ending, and synchronizing epochs
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Fence: Active Target Synchronization

§ Collective synchronization model

§ Starts and ends access and exposure 
epochs on all processes in the window

§ All processes in group of “win” do an 
MPI_WIN_FENCE to open an epoch

§ Everyone can issue PUT/GET
operations to read/write data

§ Everyone does an MPI_WIN_FENCE 
to close the epoch

§ All operations complete at the second 
fence synchronization

56

Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)
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Exercise 1: Stencil with RMA Fence (1/2)

57

Origin buffers

Target buffers

RMA window

PUT

PU
T

PUT

PU
T
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Exercise 1: Stencil with RMA Fence (2/2)

§ In the derived datatype version of the stencil code
– Used nonblocking communication

– Used derived datatypes

§ Let’s try to use RMA fence
– Move data with PUT instead of send/recv

§ Start from derived_datatype/stencil.c

§ Solution available in rma/stencil_fence_put.c
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Exercise 2: Stencil with RMA Fence (GET model)

§ In the derived datatype version of the stencil code
– Used nonblocking communication

– Used derived datatypes

§ Let’s try to use RMA fence
– Move data with GET instead of send/recv

§ Start from rma/stencil_fence_put.c

§ Solution available in rma/stencil_fence_get.c
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PSCW: Generalized Active Target Synchronization

§ Like FENCE, but origin and target specify who 
they communicate with

§ Target: Exposure epoch

– Opened with MPI_Win_post

– Closed by MPI_Win_wait

§ Origin: Access epoch

– Opened by MPI_Win_start

– Closed by MPI_Win_complete

§ All synchronization operations may block, to 
enforce P-S/C-W ordering

– Processes can be both origins and targets

60

Start

Complete

Post

Wait

Target Origin

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)
MPI_Win_complete/wait(MPI_Win win)
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Exercise 3: Stencil with RMA PSCW (PUT model)

§ In the fence version of the stencil code
– Unnecessary synchronization between all processes

§ Let’s try to use RMA PSCW
– Synchronize with PSCW instead of Fence

§ Start from rma/stencil_fence_put.c

§ Solution available in rma/stencil_pscw_put.c
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Lock/Unlock: Passive Target Synchronization

§ Passive mode: One-sided, asynchronous communication
– Target does not participate in communication operation

§ Shared memory-like model

62

Active Target Mode Passive Target Mode

Lock

Unlock

Start

Complete

Post

Wait
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Passive Target Synchronization

§ Lock/Unlock: Begin/end passive mode epoch
– Target process does not make a corresponding MPI call
– Can initiate multiple passive target epochs to different processes
– Concurrent epochs to same process not allowed (affects threads)

§ Lock type
– SHARED: Other processes using shared can access concurrently
– EXCLUSIVE: No other processes can access concurrently

§ Flush: Remotely complete RMA operations to the target process
– After completion, data can be read by target process or a different process

§ Flush_local: Locally complete RMA operations to the target process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)
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MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)



Advanced Passive Target Synchronization

§ Lock_all: Shared lock, passive target epoch to all other 
processes
– Expected usage is long-lived: lock_all, put/get, flush, …, 
unlock_all

§ Flush_all – remotely complete RMA operations to all 
processes

§ Flush_local_all – locally complete RMA operations to all 
processes
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MPI_Win_lock_all(int assert, MPI_Win win)
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MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)



Which synchronization mode should I use, when?

§ RMA communication has low overheads versus send/recv
– Two-sided: Matching, queuing, buffering, unexpected receives, etc…
– One-sided: No matching, no buffering, always ready to receive

– Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand)

§ Active mode: bulk synchronization
– E.g. ghost cell exchange

§ Passive mode: asynchronous data movement
– Useful when dataset is large, requiring memory of multiple nodes
– Also, when data access and synchronization pattern is dynamic
– Common use case: distributed, shared arrays

§ Passive target locking mode
– Lock/unlock – Useful when exclusive epochs are needed
– Lock_all/unlock_all – Useful when only shared epochs are needed
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MPI RMA Memory Model

§ MPI-3 provides two memory models: 
separate and unified

§ Separate Model
– Logical public and private copies
– MPI provides software coherence between 

window copies
– Extremely portable, to systems that don’t provide 

hardware coherence

§ New Unified Model
– Single copy of the window
– System must provide coherence
– Superset of separate semantics

• E.g. allows concurrent local/remote access
– Provides access to full performance potential of 

hardware
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MPI RMA Memory Model (separate windows)

§ Very portable, compatible with non-coherent memory systems

§ Limits concurrent accesses to enable software coherence

Public
Copy

Private
Copy

Same source
Same epoch Diff. Sources

load store store

X

67

X
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MPI RMA Memory Model (unified windows)

§ Allows concurrent local/remote accesses
§ Concurrent, conflicting operations are allowed (not invalid)

– Outcome is not defined by MPI (defined by the hardware)

§ Can enable better performance by reducing synchronization
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Unified
Copy

Same source
Same epoch Diff. Sources

load store store

X
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MPI RMA Operation Compatibility (Separate)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL X X

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL OVL+NOVL

This matrix shows the compatibility of MPI-RMA operations when two or 
more processes access a window at the same target concurrently.

OVL – Overlapping operations permitted
NOVL – Nonoverlapping operations permitted
X – Combining these operations is OK, but data might be garbage

69Advanced MPI, ISC21 (06/24/2021-06/25/2021)



MPI RMA Operation Compatibility (Unified)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL NOVL OVL+NOVL

This matrix shows the compatibility of MPI-RMA operations when two or 
more processes access a window at the same target concurrently.

OVL – Overlapping operations permitted
NOVL – Nonoverlapping operations permitted
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Synchronizing Local and RMA Access (1/2)

§ RMA operations access the public copy of window

§ Local load/store update the private copy
– Including using as MPI send/receive buffers

§ Ensure memory synchronization for portability

§ Implicit memory synchronization (i.e., memory barrier) in RMA 
synchronization calls

– Fence: Synchronize private and public copies of local window
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P0 P1

PUT(x=1, P1)

load x

Fence
Public
Copy

Private
Copy Fence
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Synchronizing Local and RMA Access (2/2)

§ PSCW active target epoch
– Post: Updates in private 

copy becomes visible in 
public copy

– Wait: Updates in public copy 
becomes visible in private 
copy

§ Passive target epoch
– Lock/Lock_all: Updates in 

public copy becomes visible 
in private

– Unlock/Unlock_all: Updates 
in private copy becomes 
visible in public
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Lock(P1)

P0 P1
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Window synchronization: MPI_WIN_SYNC

§ Synchronizes the public and private copies of local window in 
passive target epoch
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MPI_Win_sync(MPI_Win win)

P0 P1

Win_sync

Barrier Barrier

load y

Lock(shared, P1)
...

Lock(shared, P1)

...
Unlock(P1) Unlock(P1)

Public
Copy

Private
Copy

store x = 1

Win_sync
Public
Copy

Private
Copy

GET(x, P1)
PUT(y=1, P1)
Flush(P1)

Barrier Barrier



Exercise 4: Stencil with RMA Lock_all/Unlock_all
(PUT model)
§ In the fence and PSCW versions of the stencil code, RMA 

synchronization involves the target processes

§ Let’s try to use RMA Lock_all/Flush_all/Unlock_all
– Only the origin processes call RMA synchronization

– Still need Barrier for process synchronization (e.g., ensure neighbors 
have completed data update to my local window)

– Need Win_sync for memory synchronization 

§ Start from rma/stencil_fence_put.c

§ Solution available in rma/stencil_lock_put.c
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Example: BSPMM with RMA

§ rma/bspmm.c

§ Only synchronization from origin processes (workers), no 
synchronization from target processes (implicit master)

§ Replace send/receive with RMA Get and Accumulate 
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Exercise 5: BSPMM using global counter (atomics)

§ In the basic RMA version of BSPMM, we statically assigned the ownership 
of blocks for each process

– Load imbalance: e.g., one process may get more zero-blocks than others

§ Let us implement a dynamic task secluding
– Each process dynamically “queries” the next available block computation once 

finished the previous one (A-based parallelism)

– Use atomic Fetch_and_op(SUM) with a “global counter”

§ Start from rma/bspmm.c

§ Solution available in rma/bspmm_counter.c
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FOP(counter)-> 0
compute a11*b1j

FOP(counter)-> 2
compute a13*b3j
...

rank  0
FOP(counter)-> 1
compute a12*b2j
FOP(counter)-> 3
Skip (a21)

FOP(counter)-> 4
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...

rank  1
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§ Offloading data transfer to hardware is ideal for 
performance

– Two-sided (e.g., SEND/RECEIVE): 

• Require complex message matching (rank 
+ tag + comm), especially for wildcard 
receives (MPI_ANY_TAG|ANY_SOURCE)

• Supported HW: Mellanox ConnectX-5 
(support HW tag matching)

– One-sided (e.g., PUT/GET/ACCUMUALTE): 

• No matching requirement, easier for 
hardware offloading

• Natively supported on various RDMA 
networks such as Mellanox InfiniBand, 
Cray Aries, and Fujitsu Tofu

Hardware-Offloaded Communication
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Process 0 Process 1

ComputationPut(data)

Hardware-offloaded data transfer can 
be fully overlapped with computation



Asynchronous Execution of MPI RMA

§ Asynchronous execution of RMA depends on the MPI implementation, 
which in turn depends on what the network hardware provides

§ Most common situation on current network hardware:

– Some operations are natively supported in hardware (e.g., contiguous 
PUT/GET)

– Other operations need to be emulated in software
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Software implementation of one-
sided operations means that the 
target process has to make an 
MPI call to make progress

Process 0 Process 1
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Delay

Software-handled MPI Accumulate



§ Every MPI process creates a dedicated helper thread at MPI_Init

– Supported by most MPI implementations, but unlikely to be default

– Might need to turn on some environment variable (check the documentation)

§ The thread polls MPI progress for the process while the process is computing

§ Dedicates some number of computing cores per process

§ Multithreading safety overhead (i.e., MPI internal lock contention between 
threads, memory barriers)

Possible Solution 1: Thread-based Progress (1/2)
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Possible Solution 1: Thread-based Progress (2/2)

§ Available in many mainstream MPI implementations

§ Core binding is important!  See vendor documentation
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MPICH:

Cray MPI:

Intel MPI:

% export MPIR_CVAR_ASYNC_PROGRESS=1

% export I_MPI_ASYNC_PROGRESS=1

% export MPICH_NEMESIS_ASYNC_PROGRESS=1
% export MPICH_MAX_THREAD_SAFETY=multiple



Possible Solution 2: Interrupt-based Progress

§ Utilize hardware interrupts to awaken a kernel thread when new 
message arrives

§ Examples: Cray MPI DMAPP mode (deprecated from v7.6.0), IBM 
MPI on Blue Gene/P

§ Overhead of frequent interrupts, need special hardware support

– Not a common model for most current networks
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Possible Solution 3: Process-based Progress (1/4)
§ Casper

– Dedicating arbitrary number of cores 
(usually 1-4 per multicore node) to 
“ghost processes”

– Portable PMPI profiling interface based
design allows integration with any MPI-3 
implementations *

– Transparently replace MPI_COMM_WORLD

by COMM_USER_WORLD 

– Shared memory mapping between local 
user and ghost processes 

– Redirect RMA operations to ghost 
process, thus ghost process ensures 
communication progress

– Casper can redirect operations only for 
MPI_WIN_ALLOCATE windows
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* MPI-3 MPI_Win_allocate_shared function is used to enable shared memory mapping.
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Possible Solution 3: Process-based Progress (2/4)
§ Download Casper at 

http://www.mcs.anl.gov/project/casper/downloads

§ How to use Casper?
1. Load Casper between application and MPI library:

– Option 1: dynamic load Casper at execution time
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% mpicc -o app app.c
% export LD_PRELOAD=<casper_install_dir>/lib/libcasper.so

% mpicc -o app app.c –lcasper

% export CSP_NG=2
% mpiexec -np 48 -ppn 24 ./app
/* 48 processes are running on two nodes,
* each node has 22 user processes and 2 ghost processes*/

– Option 2: link with Casper (ensure link order: app.o -lcasper -lmpi)

2. Set number of ghost processes (dedicated progress core)

http://www.mcs.anl.gov/project/casper/downloads


Possible Solution 3: Process-based Progress (3/4)

§ Demonstrating communication progress
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MPI_Win_allocate(sizeof(int), sizeof(int), 
MPI_INFO_NULL, MPI_COMM_WORLD, &a, &win);

if (rank == 0) {

MPI_Win_lock(MPI_LOCK_SHARED, 1, 0, win);
for (int x = 0; x < ITER; x++) {

MPI_Accumulate(…, target = 1, …);
MPI_Win_flush(1, win);

}
MPI_Win_unlock(1, win);
MPI_Send(…, dst = 1, …);

} else {
MPI_Irecv(…, src = 0, …, &req);
for (int x = 0; x < ITER; x++) {

busy_wait(time);
MPI_Test(&req, &flag, &stat);

}

}
MPI_Win_free(&win);

Lower is better

MPI_Accumulate with asynchronous progress

* Measured on NERSC Edison Cray XC30 with CrayMPI 6.3.1.
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Possible Solution 3: Process-based Progress (4/4)

§ Performance improvement of NWChem with RMA 
asynchronous progress
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Section Summary

§ MPI one-sided communication is associated with windows

§ Operations include basic PUT, GET, and Atomic operations

§ Synchronization modes
– Active-target (similar to two-sided) : FENCE, PSCW

– Passive-target: LOCK-UNLOCK, FLUSH, FLUSH_LOCAL…

§ Enable asynchronous progress for performance
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MPI Hybrid Programming: Threads
Slides Available at https://anl.box.com/v/yguo-isc-tutorial-2021
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Hybrid MPI + X : Most Popular Forms
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Why Hybrid MPI+X? Towards Strong Scaling (1/3)

§ Strong scaling applications is 
increasing in importance
– Hardware limitations: not all 

resources scale at the same 
rate as cores (e.g., memory 
capacity, network resources)

– Desire to solve the same 
problem faster on a bigger 
machine

• Nek5000, HACC, LAMMPS
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Evolution of the memory capacity per core in the 
Top500 list (Peter Kogge. Pim & memory: The need for a 
revolution in architecture.)

Sunway
TaihuLight
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§ Strong scaling pure MPI applications is getting harder
– On-node communication is costly compared to load/stores

– O(Px) communication patterns (e.g., All-to-all)  costly



Why Hybrid MPI+X? Towards Strong Scaling (2/3)
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§ MPI+X benefits (X= {threads,MPI shared-memory, etc.})
– Less memory hungry (MPI runtime consumption, O(P) data 

structures, etc.)

– Load/stores to access memory instead of message passing

– P is reduced by constant C (#cores/process) for O(Px) 
communication patterns

§ Example 1: the Nek5000 team is working at the strong 
scaling limit

Nek5000



Why Hybrid MPI+X? Towards Strong Scaling (3/3)

§ Example 2: Quantum Monte Carlo 
Simulation (QMCPACK)
– Size of the physical system to 

simulate is bound by memory 
capacity [1]

– Memory space dominated by large 
interpolation tables (typically several 
Giga Bytes of storage)

– Threads are used to share those 
tables

– Memory for communication buffers 
must be kept low to be allow 
simulation of larger and highly 
detailed simulations.
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Shared large B-spline table

W W W W W W

Thread 0 Thread 1 Thread 2
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information

W
Walker data

[1] Kim, Jeongnim, et al. "Hybrid algorithms in quantum Monte Carlo." Journal of Physics, 2012.
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§ MPI describes parallelism between 
processes (with separate address spaces)

§ Thread parallelism provides a shared-
memory model within a process

§ OpenMP and Pthreads are common models
– OpenMP provides convenient features for loop-

level parallelism. Threads are created and 
managed by the compiler, based on user 
directives.

– Pthreads provide more complex and dynamic 
approaches. Threads are created and managed 
explicitly by the user.

93

MPI Process

COMP.

COMP.

MPI COMM.

MPI Process

COMP.

COMP.

MPI COMM.

MPI + Threads: How To? (2/3)
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§ MPI_THREAD_SINGLE
– No additional threads

§ MPI_THREAD_FUNNELED
– Master thread communication only

§ MPI_THREAD_SERIALIZED
– Threaded communication serialized

§ MPI_THREAD_MULTIPLE
– No restrictions

•Restriction

•Low 
Thread-

Safety Costs

•Flexibility

•High 
Thread-

Safety Costs
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MPI   + Threads

Interoperability

Interoperation or thread levels:

MPI + Threads: How To? (3/3)
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MPI’s Four Levels of Thread Safety

§ MPI defines four levels of thread safety -- these are 
commitments the application makes to the MPI

§ Thread levels are in increasing order
– If an application works in FUNNELED mode, it can work in SERIALIZED

§ MPI defines an alternative to MPI_Init
– MPI_Init_thread(requested, provided): Application specifies level it 

needs; MPI implementation returns level it supports
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MPI_THREAD_SINGLE

§ There are no additional user threads in the system
– E.g., there are no OpenMP parallel regions

int buf[100];
int main(int argc, char ** argv)
{

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (i = 0; i < 100; i++)
compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();

return 0;
}
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MPI Process

COMP.

COMP.

MPI COMM.
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MPI_THREAD_FUNNELED
§ All MPI calls are made by the master thread

– Outside the OpenMP parallel regions
– In OpenMP master regions

int buf[100];
int main(int argc, char ** argv)
{

int provided;

MPI_Init_thread(&argc, &argv, 
MPI_THREAD_FUNNELED, &provided);
if (provided < MPI_THREAD_FUNNELED)

MPI_Abort(MPI_COMM_WORLD,1);

for (i = 0; i < 100; i++)
pthread_create(…,func,(void*)i);

for (i = 0; i < 100; i++)
pthread_join();

/* Do MPI stuff */

MPI_Finalize();
return 0;

}
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MPI Process

COMP.

COMP.

MPI COMM.

void* func(void* arg) {
int i = (int)arg;
compute(buf[i]);

}
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int buf[100];
int main(int argc, char ** argv)
{

int provided;

pthread_mutex_t mutex;

MPI_Init_thread(&argc, &argv, 
MPI_THREAD_SERIALIZED, &provided);
if (provided < MPI_THREAD_SERIALIZED) 
MPI_Abort(MPI_COMM_WORLD,1);

for (i = 0; i < 100; i++)
pthread_create(…,func,(void*)i);

for (i = 0; i < 100; i++)
pthread_join();

MPI_Finalize();

return 0;
}

MPI_THREAD_SERIALIZED
§ Only one thread can make MPI calls at a time

– Protected by OpenMP critical regions
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MPI Process

COMP.

COMP.

MPI COMM.

void* func(void* arg) {
int i = (int)arg;
compute(buf[i]);
pthread_mutex_lock(&mutex);

/* Do MPI stuff */
pthread_mutex_unlock(&mutex);

}
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int buf[100];
int main(int argc, char ** argv)
{

int provided;

MPI_Init_thread(&argc, &argv, 
MPI_THREAD_MULTIPLE, &provided);
if (provided < MPI_THREAD_MULTIPLE)

MPI_Abort(MPI_COMM_WORLD,1);

for (i = 0; i < 100; i++)

pthread_create(…,func,(void*)i);
for (i = 0; i < 100; i++)

pthread_join();

MPI_Finalize();
return 0;

}

void* func(void* arg) {
int i = (int)arg;
compute(buf[i]);

/* Do MPI stuff */
}

MPI_THREAD_MULTIPLE

§ Any thread can make MPI calls any time (restrictions apply)
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Threads and MPI

§ An implementation is not required to support levels higher 
than MPI_THREAD_SINGLE; that is, an implementation is not 
required to be thread safe

§ A fully thread-safe implementation will support 
MPI_THREAD_MULTIPLE

§ A program that calls MPI_Init (instead of MPI_Init_thread) 
should assume that only MPI_THREAD_SINGLE is supported

– MPI Standard mandates MPI_THREAD_SINGLE for MPI_Init

§ A threaded MPI program that does not call MPI_Init_thread is 
an incorrect program (common user error we see)
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MPI Semantics and MPI_THREAD_MULTIPLE

§ Ordering: When multiple threads make MPI calls concurrently, 
the outcome will be as if the calls executed sequentially in some 
(any) order

– Ordering is maintained within each thread
– User must ensure that collective operations on the same communicator, 

window, or file handle are correctly ordered among threads
• E.g., cannot call a broadcast on one thread and a reduce on another thread on 

the same communicator

– It is the user's responsibility to prevent races when threads in the same 
application post conflicting MPI calls 

• E.g., accessing an info object from one thread and freeing it from another 
thread

§ Progress: Blocking MPI calls will block only the calling thread and 
will not prevent other threads from running or executing MPI 
functions
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Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with Collectives

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)
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Thread 0

Thread 1
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Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with Collectives

§ P0 and P1 can have different orderings of Bcast and Barrier
§ Here the user must use some kind of synchronization to 

ensure that either thread 1 or thread 2 gets scheduled first on 
both processes 

§ Otherwise a broadcast may get matched with a barrier on the 
same communicator, which is not allowed in MPI

Process 0
Thread 1                        Thread 2

MPI_Bcast(comm)

MPI_Barrier(comm)
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Process 1
Thread 1 Thread 2

MPI_Barrier(comm)

MPI_Bcast(comm)
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Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with Object Management

§ The user has to make sure that one thread is not using an 
object while another thread is freeing it
– This is essentially an ordering issue; the object might get freed before 

it is used
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Process 0
Thread 1 Thread 2     

MPI_Comm_free(comm)

MPI_Bcast(comm)
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Blocking Calls in MPI_THREAD_MULTIPLE: Correct 
Example

§ An implementation must ensure that the above example 
never deadlocks for any ordering of thread execution

§ That means the implementation cannot simply acquire a 
thread lock and block within an MPI function. It must 
release the lock to allow other threads to make progress.

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2
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The Current Situation

§ All MPI implementations support MPI_THREAD_SINGLE

§ They probably support MPI_THREAD_FUNNELED even if they 
don’t admit it.
– Does require thread-safety for some system routines (e.g. malloc)

– On most systems -pthread will guarantee it (OpenMP implies

-pthread )

§ Many (but not all) implementations support THREAD_MULTIPLE
– Hard to implement efficiently though (thread synchronization issues)

§ Bulk-synchronous OpenMP programs (loops parallelized with 
OpenMP, communication between loops) only need FUNNELED
– So don’t need “thread-safe” MPI for many hybrid programs

– But watch out for Amdahl’s Law!
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Hybrid Programming: Correctness Requirements

§ Hybrid programming with MPI+threads does not do much to 
reduce the complexity of thread programming
– Your application still has to be a correct multi-threaded application

– On top of that, you also need to make sure you are correctly following 
MPI semantics

§ Many commercial debuggers offer support for debugging 
hybrid MPI+threads applications (mostly for MPI+Pthreads
and MPI+OpenMP)
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An Example we encountered

§ We received a bug report about a very simple 
multithreaded MPI program that hangs

§ Run with 2 processes

§ Each process has 2 threads

§ Both threads communicate with threads on the other 
process as shown in the next slide

§ We spent several hours trying to debug MPICH before 
discovering that the bug is actually in the user’s program L

108Advanced MPI, ISC21 (06/24/2021-06/25/2021)



2 Processes, 2 Threads, Each Thread Executes this 
Code

for (j = 0; j < 2; j++) {
if (rank == 1) {

for (i = 0; i < 2; i++)
MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);

for (i = 0; i < 2; i++)
MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);

}
else {  /* rank == 0 */

for (i = 0; i < 2; i++)
MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
for (i = 0; i < 2; i++)

MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
}

}
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Intended Ordering of Operations

§ Every send matches a receive on the other rank

2 recvs (T2)
2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
2 recvs (T1)
2 sends (T1)

Rank 0

2 sends (T2)
2 recvs (T2)
2 sends (T2)
2 recvs (T2)

2 sends (T1)
2 recvs (T1)
2 sends (T1)
2 recvs (T1)

Rank 1
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Possible Ordering of Operations in Practice

§ Because the MPI operations can be issued in an arbitrary 
order across threads, all threads could block in a RECV call

1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)

Rank 0

2 sends (T2)
1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)

2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)
2 recvs (T1)

Rank 1
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MPI+OpenMP correctness semantics

§ MPI only specifies interoperability with 
threads, not with OpenMP (or any other high-
level programming model using threads)

– OpenMP iterations need to be carefully 
mapped to which thread executes them 
(some schedules in OpenMP make this 
harder)

§ For OpenMP tasks, the general model to use 
is that an OpenMP thread can execute one or 
more OpenMP tasks

– An MPI blocking call should be assumed to 
block the entire OpenMP thread, so other 
tasks might not get executed

112

Applications

OpenMP, Cilk, 
TBB 

MPI
Pthreads or 

other threads
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OpenMP threads: MPI blocking Calls (1/2)
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int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel for
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..);

}

MPI_Finalize();

return 0;
}

Iteration to OpenMP thread mapping needs to explicitly be handled by the user; 
otherwise, OpenMP threads might all issue the same operation and deadlock
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OpenMP threads: MPI blocking Calls (2/2)
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int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

assert(omp_get_num_threads() > 1)
#pragma omp for schedule(static, 1)
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..);

}
}

MPI_Finalize();

return 0;
}

Either explicit/careful mapping of iterations to threads, or using nonblocking
versions of send/recv would solve this problem
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OpenMP tasks: MPI blocking Calls (1/5)
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int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp for
for (i = 0; i < 100; i++) {

#pragma omp task
{
if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..);

}
}

}
MPI_Finalize();
return 0;

}

This can lead to deadlocks. No ordering or progress guarantees in OpenMP task 
scheduling should be assumed; a blocked task blocks it’s thread and tasks can be 
executed in any order.
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OpenMP tasks: MPI blocking Calls (2/5)
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int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else

MPI_Recv(.., from_myself, ..)
}

}
MPI_Finalize();
return 0;

}

Same problem as before. 
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OpenMP tasks: MPI blocking Calls (3/5)
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int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

MPI_Request req;
if (i % 2 == 0)

MPI_Isend(.., to_myself, .., &req);

else
MPI_Irecv(.., from_myself, .., &req);

MPI_Wait(&req, ..);
}

}
MPI_Finalize();

return 0;
}

Using nonblocking operations but with MPI_Wait inside the task region does not 
solve the problem
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OpenMP tasks: MPI blocking Calls (4/5)
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int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

MPI_Request req; int done = 0;
if (i % 2 == 0)

MPI_Isend(.., to_myself, .., &req);
else

MPI_Irecv(.., from_myself, .., &req);
While (!done) {

#pragma omp taskyield
MPI_Test(&req, &done, ..);

}
}

}
}

MPI_Finalize();
return 0;

}

Still incorrect; taskyield does not guarantee a task switch
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OpenMP tasks: MPI blocking Calls (5/5)

119

int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);
MPI_Request req[100];

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Isend(.., to_myself, .., &req[i]);

else
MPI_Irecv(.., from_myself, .., &req[i]);

}
}

MPI_Waitall(100, req, ..);
MPI_Finalize();

return 0;
}

Correct example. Each task is nonblocking.
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Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with RMA
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int main(int argc, char ** argv)
{

/* Initialize MPI and RMA window */

#pragma omp parallel for
for (i = 0; i < 100; i++) {

target = rand();
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, target, 0, win);
MPI_Put(..., win);
MPI_Win_unlock(target, win);

}

/* Free MPI and RMA window */

return 0;
}

Different threads can lock the same process causing multiple locks to the 
same target before the first lock is unlocked
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Exercise 1: Stencil in Funneled mode (1/2)
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Exercise 1: Stencil in Funneled mode (2/2)

§ Parallelize computation (OpenMP parallel for)

§ Main thread does all communication

§ Start from derived_datatype/stencil.c

§ Solution available in threads/stencil_funneled.c
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Exercise 2: Stencil in Multiple mode (1/2)
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Exercise 2: Stencil in Multiple mode (2/2)

§ Divide the process memory among OpenMP threads

§ Each thread responsible for communication and computation

§ Start from threads/stencil_funneled.c

§ Solution available in threads/stencil_multiple.c
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Exercise 3: BSPMM in Funneled mode

§ Parallelize dgemm computation (OpenMP parallel for)

§ Main thread does all communication

§ Start from rma/bspmm_counter.c

§ Solution available in threads/bspmm_funneled.c
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Exercise 4: BSPMM in Multiple mode

§ Each thread queries the next available block multiplication

§ Start from threads/bspmm_funneled.c

§ Solution available in threads/bspmm_multiple.c
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MPI+threads performance recommendations



Recommendation: Maximize independence 
between threads with communicators
§ Each thread accesses to a different communicator

– Each communicator may be associated with isolated resource in an 
MPI implementation
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MPI_Comm *comms;
int nthreads = omp_get_num_threads();
comms = malloc(sizeof(MPI_Comm) * nthreads);

for (i = 0; i < nthreads; i++)
MPI_Comm_dup(MPI_COMM_WORLD, &comms[i]);

#pragma omp parallel
{

int tid = omp_get_thread_num();
#pragma omp taskloop
for (i = 0; i < 100; i++)

MPI_Isend(.., comm[tid], &req[i]);}
}
MPI_Waitall(100, req, ..);

MPI

Comm[0]

T0

Comm[1]

T1

Comm[2]

T2

Comm[3]

T3

Hardware



Recommendation: Maximize independence 
between threads with ranks or tags (1/2)

§ Each thread communicates with different peer_rank or tag
– MPI may assign isolated resource for different set of [peer_rank + tag]
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#pragma omp parallel
{

int tid = omp_get_thread_num();
#pragma omp taskloop
for (i = 0; i < 100; i++)

MPI_Isend(.., peer_ranks[tid], tid,
comm, &req[i]);}

}
MPI_Waitall(100, req, ..);

MPI

Peer=P1

T0

Peer=P2

T1

Peer=P3

T2

Peer=P4

T3

Hardware

P0



Recommendation: Maximize independence 
between threads with ranks or tags (2/2)

§ Threads have to match all receive messages in 
sequential (e.g., a single receive-queue) if a 
wildcard receive may be posted
– Ensure ordering of message matching

§ Let MPI know if you do not use wildcard receive
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MPI
P0, 0

ANY_SRC
ANY_TAG

P2, 1
P0, 2
P2, 3

COMM

MPI_Info info;
info = MPI_Info_create();
MPI_Info_set(info,

“mpi_assert_no_any_source”, “true”);

MPI_Comm_set_info(comm, info);
MPI_Info_free(&info);
/* Communicate without ANY_SOURCE */

– Info hints 
mpi_assert_no_any_source, 
mpi_assert_no_any_tag (already 
proposed to MPI standard)

– MPI can get rid of the single 
receive-queue for the 
communicator



Communication Isolation Limitations

§ Progress: A blocked thread will not prevent progress of other runnable 
threads on the same process

– ssend(comm1) returns only after irecv(comm1) is posted

• MPI may internally send handshake messages to synchronize

– Thread 0 has to make progress for comm1 in wait(req0) (e.g., access 
comm1’s receive-queue), to ensure ssend(comm1) can complete
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ssend(comm1)

ssend(comm0)

Rank 0

irecv(comm0, &req0)
pthread_barrier ------
wait(req0)
pthread_barrier ------

Rank 1

irecv(comm1, &req1)

wait(req1)

Thread 0 Thread 1 

(A correct program)
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Possible Optimizations MPI libraries can do
§ Virtual Communication Interface (VCI)

– Each VCI abstracts a set of network/shared-memory resources

– Some networks support multiple VCIs: InfiniBand contexts, scalable endpoints 
over Intel Omni-Path

– Traditional MPI implementation uses single VCI

• Serializes all traffic

• Does not fully exploit network hardware resources

§ Utilizing multiple VCIs to maximize independence in communication
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MPI

Comm[0]

T0

Comm[1]

T1

Comm[2]

T2

Comm[3]

T3

Hardware

VCI VCI VCI 

– Separate VCIs per communicator or 
per RMA window

– Distribute traffic between VCIs with 
respect to ranks, tags, and generally 
out-of-order communication

– M-N mapping between Work-Queues 
and VCIs



Exercise 5: Stencil with Independent Communicators

§ Divide the process memory among OpenMP threads

§ Each thread responsible for communication and computation

§ Each thread uses a different communicator

§ Start from threads/stencil_multiple.c

§ Solution available in threads/stencil_multiple_ncomms.c
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Exercise 6: BSPMM with overlapping windows

§ Each thread queries the next available block multiplication

§ Each thread uses a different window (overlapped) for 
accessing A and B global matrices
– Have to use a single window for C matrix and global counter in order 

to ensure atomicity

§ Start from threads/bspmm_multiple.c

§ Solution available in threads/bspmm_multiple_nwins.c
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MPI+threads optimizations in Intel MPI 2019

§ Very restricted version

§ MPI_Init_thread(MPI_THREAD_MULTIPLE)

§ Environment variables
– I_MPI_THREAD_SPLIT=1

– I_MPI_THREAD_RUNTIME=openmp

§ Restriction
– Communicators shared only by threads with the same thread ID on all 

processes

§ Known issues
– Using MPI_PROC_NULL with I_MPI_THREAD_SPLIT=1 causes errors.

– MPI_Finalize can take long with I_MPI_THREAD_SPLIT=1.
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For more information: https://software.intel.com/en-us/mpi-developer-guide-linux-multiple-endpoints-support
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Message-rate and Bandwidth with 
MPI_THREAD_SPLIT
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§ Each thread communicating with another using separate 
communicators.
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MPI libraries can exploit exposed communication 
parallelism

0

0.5

1

1.5

2

2.5

Small Medium Large

Halo exchange time per iteration with 16 cores for a 2D stencil

MPI_THREAD_SINGLE MPI_THREAD_MULTIPLE with MPI_COMM_WORLD

MPI_THREAD_SPLIT MPI_THREAD_MULTIPLE with separate Comms (flexible)
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Section Summary

§ Hybrid MPI + “X” is a promising approach for large scale programming 
(e.g., MPI+Threads)

– Less memory consumption

– More efficient on-node data movement  (load/store)

§ MPI thread safety: SINGLE, FUNNELED, SERIALIZED, MULTIPLE 

§ Use MPI_Init_thread for threaded programs (i.e., not SINGLE)

§ THREAD_MULTIPLE ordering & progress semantics 

§ Always maximize independence between threads in your program

– Independent communicators, no wildcard, independent peer_ranks
and tags
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MPI Hybrid Programming:
Shared Memory

Slides Available at https://anl.box.com/v/yguo-isc-tutorial-2021
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Hybrid Programming with Shared Memory

§ MPI-3 allows different processes to allocate shared memory 
through MPI
– MPI_Win_allocate_shared

§ Uses many of the concepts of one-sided communication

§ Applications can do hybrid programming using MPI or 
load/store accesses on the shared memory window

§ Other MPI functions can be used to synchronize access to 
shared memory regions

§ Can be simpler to program than threads
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Creating Shared Memory Regions in MPI

MPI_COMM_WORLD

MPI_Comm_split_type (MPI_COMM_TYPE_SHARED)

Shared memory 
communicator

MPI_Win_allocate_shared

Shared memory 
window

Shared memory 
window

Shared memory 
window

Shared memory 
communicator

Shared memory 
communicator
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Load/store

Regular RMA windows vs. Shared memory windows

§ Shared memory windows allow 
application processes to directly 
perform load/store accesses on 
all of the window memory

– E.g., x[100] = 10

§ All of the existing RMA functions 
can also be used on such 
memory for more advanced 
semantics such as atomic 
operations

§ Can be very useful when 
processes want to use threads 
only to get access to all of the 
memory on the node

– You can create a shared memory 
window and put your shared data

Local 
memory

P0

Local 
memory

P1

Load/store
PUT/GET

Traditional RMA windows

Load/store

Local memory

P0 P1

Load/store

Shared memory windows

Load/store
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MPI_COMM_SPLIT_TYPE

§ Create a communicator where processes “share a property”
– Properties are defined by the “split_type”

§ Arguments:
– comm - input communicator (handle)

– split_type - property of the partitioning (integer)

– key - rank assignment ordering (nonnegative integer)

– info - info argument (handle)

– newcomm - output communicator (handle)
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MPI_Comm_split_type(MPI_Comm comm, int split_type,
int key, MPI_Info info, MPI_Comm *newcomm)
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MPI_WIN_ALLOCATE_SHARED

§ Create a remotely accessible memory region in an RMA window
– Data exposed in a window can be accessed with RMA ops or load/store

§ Arguments:
– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

– baseptr - pointer to exposed local data

– win            - window (handle)
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MPI_Win_allocate_shared(MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, void *baseptr,
MPI_Win *win)
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Shared Arrays with Shared memory windows

int main(int argc, char ** argv)
{

int buf[100];

MPI_Init(&argc, &argv);
MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);
MPI_Win_allocate_shared(comm, ..., &win);

MPI_Win_lockall(win);

/* copy data to local part of shared memory */
MPI_Win_sync(win);

/* use shared memory */

MPI_Win_unlock_all(win);

MPI_Win_free(&win);
MPI_Finalize();
return 0;

}
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Memory allocation and placement

§ Shared memory allocation does not need to be uniform 
across processes
– Processes can allocate a different amount of memory (even zero)

§ The MPI standard does not specify where the memory would 
be placed (e.g., which physical memory it will be pinned to)
– Implementations can choose their own strategies, though it is 

expected that an implementation will try to place shared memory 
allocated by a process “close to it”

§ The total allocated shared memory on a communicator is 
contiguous by default
– Users can pass an info hint called “noncontig” that will allow the MPI 

implementation to align memory allocations from each process to 
appropriate boundaries to assist with placement
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Example: BSPMM with Shared Memory (1/2)

§ shared_mem/bspmm_counter.c

§ Shift to C-based parallelism to eliminate atomic updates to C
– Every process computes different C block
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A B C

x +=

rank  0

C-based parallelism
Set 𝜶=1, 𝛽=0 for simplicity, compute 𝐂 = 𝑨𝑩

rank  1

c11+=a11*b11
c11+=a12*b21
Skip a13*(b31)

𝒄𝟏𝟏𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟑 𝒃𝟏𝟏

𝒃𝟐𝟏

𝒃𝟑𝟏

𝒄𝟏𝟐
Skip a11*(b12)
c12+=a12*b22
c12+=a13*b32

𝒃𝟏𝟐

𝒃𝟐𝟐

𝒃𝟑𝟐

𝒄𝟏𝟑𝒃𝟏𝟑

𝒃𝟐𝟑

𝒃𝟑𝟑
c13+=a11*b13
Skip a12*(b23)
Skip a13*(b33)

𝒄𝟐𝟏𝒂𝟐𝟏 𝒂𝟐𝟐 𝒂𝟐𝟑
Skip (a21)
c21+=a22*b21
Skip (a23)

... ...

𝒄𝟐𝟐 𝒄𝟐𝟑

𝒄𝟑𝟏 𝒄𝟑𝟐 𝒄𝟑𝟑



Example: BSPMM with Shared Memory (2/2)

§ Replace RMA Get and Accumulate with direct load and store 
operations from and to the global matrices
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I
K

K
J

I
J

for (k in K)
compute cij=aik*bkj

worker 0 worker 1

A B C

x +=

𝒂 𝒃 𝒄x += 𝒂 𝒃 𝒄x +=

for (k in K)
compute cij=aik*bkj

𝒃𝟏𝟏

Load StoreLoad

𝒄𝟏𝟏 𝒄𝟏𝟐 𝒄𝟏𝟑

𝒄𝟐𝟏 𝒄𝟐𝟐 𝒄𝟐𝟑

𝒄𝟑𝟏 𝒄𝟑𝟐 𝒄𝟑𝟑

𝒂𝟏𝟏



Exercise: Stencil with Shared Memory

§ Message passing model requires ghost-cells to be explicitly 
communicated to neighbor processes

§ In the shared-memory model, there is no communication.  
Neighbors directly access your data.

§ Start from rma/stencil_lock_put.c

§ Solution available in shared_mem/stencil.c

load
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Threads vs. Process Shared Memory

§ It depends on the application, target machine, and MPI 
implementation

§ When should I use process shared memory?
– The only resource that needs sharing is memory

– Few allocated objects need sharing (easy to place them in a public 
shared region)

§ When should I use threads?
– More than memory resources need sharing (e.g., TLB)

– Many application objects require sharing

– Application computation structure can be easily parallelized with high-
level OpenMP loops
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Example: Quantum Monte Carlo

W
Walker data

§ Memory capacity bound with MPI-only
§ Hybrid approaches

– MPI + threads (e.g. X = OpenMP, Pthreads)
– MPI + shared-memory (X  = MPI)

§ Can use direct load/store operations 
instead of message passing

Thread 0 Thread 1

Large B-spline table

W W W W

MPI Task 1

Core Core

MPI + Threads
• Share everything by default
• Privatize data when necessary

MPI + Shared-Memory (MPI 3.0)
• Everything private by default
• Expose shared data explicitly

MPI Task 1MPI Task 0

Large B-spline table in a Share-Memory 
Window

W

Core

W

Core

WW
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Shortcomings: Compiler Interference (1/2)

§ “malloc” is special

– Glibc special attribute decoration

– Tells compiler that the allocated 
buffer does not contain pointers 
to other memory regions
• By modifying this buffer or 

anything derived from this 
buffer, I cannot update other 
memory locations in the code (no 
aliasing semantics)

• Possible benefits: compiler can 
rearrange the code more freely, 
shorter assembly code

§ MPI_Win_allocate_shared
– Returns the memory allocated 

through the baseptr argument 
instead of the return value, 
and hence does not have this 
attribute

– If MPI_Win_allocate_shared
was modified to not return an 
error code, but to return the 
buffer, we could have used the 
above trick!

– Solution: use restrict attribute
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__attribute__((__malloc__))



Shortcomings: Compiler Interference (2/2)
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void stencil(int size)
{

double restrict *mem;
MPI_Win win;
...
MPI_Win_allocate_shared(

size * sizeof(double),
sizeof(double),..., &mem, &win);

/* stencil computation on mem */

MPI_Win_free(&win);
...

}

void stencil(int size)
{

double *mem;
...
mem =(double*)malloc(

sizeof(double) * size);

/* stencil computation on mem */

free(mem);
}

Stencil with matrix size 10K*10K doubles
on single process



Shortcomings: OS Interference (1/3)

§ OS treats regular memory allocation and shared memory 
allocation differently
– Single process memory allocation internally does an anonymous 

mmap
• The OS “likes” this type of memory allocations and assigns large pages 

(2MB) to back such memory

– Multi-process memory allocation (shared memory) internally does a 
file-backed mmap

• The OS assigns regular sized pages (4KB) to back such memory
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Shortcomings: OS Interference (2/3)

§ Solutions:
– Idea is to modify the OS to give us huge pages for shared memory

– System settings (enable hugepage-backed ramfs):
• the hugepage number in /proc/sys/vm/nr_hugepages

• the group id of huge page in /proc/sys/vm/hugetlb_shm_group

• These two can also be done by the sysctl command by the root, or they 
can be set in the configuration file /etc/sysctl.conf. 

– Within the MPI implementation, allocate the file backing the shared 
memory on “hugetlbfs”
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Shortcomings: OS Interference (3/3)
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Shortcomings: Restricted Allocation Methods

§ In MPI-3 shared memory, memory allocation is restrictive
– Allocation has to be done using the MPI call

– Cannot use the plethora of other memory allocation libraries out 
there, e.g., cannot allocate aligned memory (important for 
vectorization)

§ With threads, most of those other memory allocation 
techniques are directly usable
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Section Summary

§ Hybrid programming with MPI-3 shared memory
– MPI_Comm_split_type + MPI_Win_allocate_shared

– Can use MPI functions (e.g., RMA operations) or direct load/store to 
access the shared memory

§ MPI + Process shared memory vs. MPI + Threads
– Shared memory: only share memory and few allocated objects

– Threads: more resource sharing, more objects sharing, computation 
structure fits high-level thread-based parallelism (e.g., OpenMP loops)

§ Some performance optimizations:
– Use restrict for your shared memory pointer

– Enable hugepage
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MPI Hybrid Programming: 
Accelerators

(Thanks to Jiri Kraus @ NVIDIA for several corrections and comments)
Slides Available at https://anl.box.com/v/yguo-isc-tutorial-2021

https://anl.box.com/v/yguo-isc-tutorial-2021


Introduction

§ CPUs

– Task-sequential execution 
model (focus on latency)

– Small # of complex compute 
cores (out-of-order 
execution)

– Deep pipelines

– Large caches

– Branch prediction hardware

§ GPUs

– Data-parallel execution 
model (focus on throughput)

– Large # of simple compute 
elements (in-order execution)

– Small private memory

– Small shared memory

– Shallow pipelines

– Large off-chip global High-
Bandwidth Memory (HBM)

– High FLOPs/W and FLOPs/$
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Accelerators are becoming increasingly popular in parallel 
computing



Top500 Accelerators Based Systems (Nov 2018)

§ #1 - Summit (ORNL USA)
– NVIDIA Volta GV100

§ #2 - Sierra (LLNL USA)
– NVIDIA Volta GV100

§ #5 - Piz Daint (CSCS Switzerland)
– NVIDIA Tesla P100

§ #7 - AI Bridging Cloud Infrastructure (AIST Japan)
– NVIDIA Tesla V100

§ #9 - Titan (ORNL USA)
– NVIDIA K20X
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Upcoming Exascale Accelerators Based Systems

§ Aurora (ANL USA)
– Intel based technology

• https://www.anl.gov/article/us-department-of-energy-and-intel-to-
deliver-first-exascale-supercomputer

§ Frontier (ORNL USA)
– AMD based GPU technology

• https://www.ornl.gov/news/us-department-energy-and-cray-deliver-
record-setting-frontier-supercomputer-ornl

§ Tianhe-3 (NUDT China)
– Custom
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Programming Model for Accelerators

§ GPUs are well suited for fine grain 
data level parallelism

§ Shared Memory, Single Instruction 
Multiple Data (SIMD) model

§ Many available compute platforms 
and programming frameworks (our 
focus will be on their memory 
model and interaction with MPI)
– NVIDIA CUDA (NVIDIA platform only)
– AMD ROCm & HIP
– OpenCL & SYCL
– OpenMP
– …
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Interoperability with MPI
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Card

GPUs have separate physical memory subsystem 
How to move data between GPUs with MPI?

Real answer: It depends on what GPU library, what hardware and what MPI 
implementation you are using

Simple answer: For modern GPUs, “just like you would with a non-GPU machine”



Unified Virtual Addressing (UVA)

165

§ UVA is a memory address 
management system supported in 
modern 64-bit architectures
– Requires device driver support

§ The same virtual address space is used 
for all processors, host or devices

§ No distinction between host and 
device pointers

§ The user can query the location of the 
data allocation given a pointer in the 
unified virtual address space and the 
appropriate GPU runtime library query 
APIs (“GPU-aware” MPI library)
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UVA: Single virtual address space 
for the host and all devices

GPU

0x000 ..

CPU GPU
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Remote Direct Memory Access with UVA

166

§ Only GPU-enabled MPI 
implementations can take 
advantage of UVA

§ User can pass device 
pointer to MPI

§ MPI implementation can 
query for the owner (host 
or device) of the data 

§ If the data is on the 
device, the MPI 
implementation can 
optimize data transfers
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§ Intranode Optimization
– GPU peer-to-peer data transfers 

are possible
– MPI can directly move data 

between GPU devices 

§ Limitation
– PCIe devices doing peer-to-peer 

transfers have to share the same 
upstream root complex

MPI Process 1 MPI Process 2

GPU

Memory

CPU

Memory

GPU

MemoryPeer-to-Peer DMA transfer between GPUs

Intranode Communication with UVA



Heterogeneous Memory Management (HMM)

§ Supported in the Linux Kernel since version 
4.14 through helper functions to be used 
by device drivers

– Support for Shared Virtual Addresses (SVA) 
allowing devices to work with host virtual 
addresses directly

– Support paging in device for migrating 
memory between host and device

§ Automatic data management between 
host and GPU memories (called Unified 
Memory in CUDA)

– Data is automatically migrated between the 
host and devices on page faults

– Moving pages to device and back to host is 
similar to swap-out and swap-in of pages to 
and from disk
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MPI + HMM in a Nutshell

§ In theory, any MPI implementation can transparently work with HMM
– The MPI implementation can simply assume that the data is on the 

host

– GPUs take care of moving data between device and host memories
– (In theory, the network memory registration should simply fail for 

HMM allocations, but there have been reports of silent failures in this 
regard for CUDA, so you might need to be careful)

§ But performance can be bad:
– Issue #1: MPI does not know where the data is located

• Data management is completely handled by GPU

– Issue #2: managed heterogeneous memory cannot be directly 
accessed by the network

• Virtual address cannot be pinned to a fixed physical memory region since 
GPU might need to migrate the data (bounce buffer is needed)
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§ MPI can assume data is on host 
memory

§ MPI copies data to network pinned 
memory
– Network registration will fail

§ On a correct guess
– The copy will not trigger a page 

fault to bring data from GPU
§ On incorrect guess

– An expensive page fault will 
occur

GPU

GPU MemoryCPU

Host 
Memory

Network 
Card

Correct guess: data is on host memory
RDMA

Pinned memory available to 
network and GPU devices

CPU copy to 
pinned memory 

Page k

MPI moving data

GPU

GPU MemoryCPU

Host 
Memory

Network 
Card

MPI moving data from host memory on a wrong 
guess

RDMA

Pinned memory available to 
network and GPU devices

CPU copy to 
pinned memory 

MPI moving data

GPU page migration
Page fault

data

Page k
data

Page k

MPI + HMM Assuming Data on Host
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§ MPI can assume data is on some GPU 
device memory

§ MPI would need to move data from 
the GPU device memory to network 
pinned memory

– This can be either host or GPU 
memory (but not unified memory)

§ On a correct guess
– The copy will not trigger a page fault

§ On incorrect guess
– An expensive page fault will occur 

when accessing data on the GPU 
device memory

§ Most MPI implementations assume 
memory to reside on the GPU

GPU

GPU MemoryCPU

Host 
Memory

Network 
Card

Correct guess: data is on the target GPU
RDMA

Pinned memory available to 
network and GPU devices

Page k

MPI moving data

GPU

GPU MemoryCPU
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MPI moving data from host memory on a wrong 
guess

RDMA
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network and GPU devices
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Compute Unified Device 
Architecture (CUDA)

(Thanks to CJ Newborn from NVIDIA for review and comments)
Slides Available at https://anl.box.com/v/balaji-tutorials-2019/

https://anl.box.com/v/balaji-tutorials-2018/


Overview

§ General-purpose parallel computing 
platform and programming model released 
by NVIDIA in 2006

§ Provides a user library (libcuda), runtime 
(libcudart), device drivers and C/C++ 
compiler (NVCC)

§ Programming language extensions for C
– Define C functions to run on the GPU (kernels) 

using the __global__ declaration specifier

– Kernels can be launched with different number of 
threads using the <<<…>>> execution syntax

– Each thread executing the kernel is given a unique 
thread ID accessible from inside the kernel using 
the built-in threadIdx variable

§ Support other languages such as FORTRAN
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/* Kernel definition */
__global__ void gpu_kernel(double *in,

int size,
double *out)

{
/* get indices from thread id */
int i = threadIdx.x;
int j = threadIdx.y;

/* each thread performs work */
out[i][j] = f(in, i, j);

}

int main()
{
double *in_h, *out_h, *in_d, *out_d;
in_h = malloc(size);
out_h = malloc(size);
cudaMalloc(&in_d, size);
cudaMalloc(&out_d, size);

cudaMemcpy(in_d, in_h, size,
cudaMemcpyHostToDevice);

/* kernel invocation with N threads */
gpu_kernel<<<2,N>>>(in_d, size, out_d);

cudaMemcpy(out_h, out_d, size,
cudaMemcpyDeviceToHost);

[...snip...]

return 0;
}



MPI + CUDA-4 with GPUDirect
§ GPUDirect 1.0 (Q2’ 2010) allows pinned 

memory to be shared by GPU and NIC 
such that GPU can directly copy data 
in/out pinned memory and NIC can DMA 
data from it

§ GPUDirect 2.0 (Peer-to-peer 2011) 
extends UVA support by allowing direct 
memory transfers between GPUs in the 
same node bypassing host completely
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double *dev_buf;
cudaMalloc(&dev_buf, size);

if(my_rank == sender) {
gpu_kernel<<<..>>>(dev_buf);
cudaDeviceSynchonize();
MPI_Isend(dev_buf, size, MPI_DOUBLE, receiver, 0, comm, req);

} else {
MPI_Recv(dev_buf, size, MPI_DOUBLE, sender, 0, comm, &status);
gpu_kernel<<<..>>>(dev_buf);

}

• Register memory to ensure CUDA memory operations  
complete before returning control:
• cuPointerSetAttribute(…, 

CU_POINTER_ATTRIBUTE_SYNC_MEMOPS, …)

GPU

GPU MemCPU
Host
Mem

Direct Memory 
Access (DMA)

void* d_data

Network 
Card

RDMA

Pinned memory available 
to network and GPU 

devices

MPI moving data



MPI + GPUDirect RDMA (CUDA ≥ 5)

§ Technology introduced in 2013 with Kepler-class GPUs and 
CUDA-5

§ GPU memory is directly accessible to third-party devices, 
including network interfaces (NIC driver talks to CUDA driver 
to register GPU memory)

§ RDMA operations to/from the device memory are possible 
and completely bypass the host memory (zero copy)
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double *dev_buf;
cudaMalloc(&dev_buf, size);

if(my_rank == sender) {
gpu_kernel<<<..>>>(dev_buf);
cudaDeviceSynchronize();
MPI_Isend(dev_buf, size, MPI_DOUBLE, receiver, 0, comm, req);

} else {
MPI_Recv(dev_buf, size, MPI_DOUBLE, sender, 0, comm, &status);
gpu_kernel<<<..>>>(dev_buf);

}



MPI + CUDA Managed Memory

§ Unified Memory between host and device
– CUDA kernel driver has a copy of the page table of the host and can 

handle pagefaults by migrating pages from host to device & vice versa

§ Managed Memory is not guaranteed to work with MPI

§ As mentioned before, performance can also be bad
– MPI never knows if pages are on host or device (can only guess)
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double *buf;
cudaMallocManaged(&buf, size);

/* initialize buf in host … */

if(my_rank == sender) {
gpu_kernel<<<..>>>(buf);
cudaDeviceSynchronize();
MPI_Isend(buf, size, MPI_DOUBLE, receiver, 0, comm, req);

} else {
MPI_Recv(buf, size, MPI_DOUBLE, sender, 0, comm, &status);
gpu_kernel<<<..>>>(buf);

}



MPI + CUDA Optimizations Historical Summary
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Period CUDA 
version Major Features MPI Optimization Space MPI Implementation 

Requirements 

After 
2011

>= 4.0
< 5.0

• GPUDirect 1.0: RDMA can use GPU 
pinned memory

• GPUDirect 2.0: GPU peer-to-peer 
DMA possible 

• Use DMA and RDMA without 
extra memory copies to 
temporary buffers

GPU-aware MPI 
implementations

After 
2012 >= 5.0

• GPUDirect RDMA: GPU memory is 
directly accessible to third-party 
devices

• Completely bypass host memory 
through RDMA to/from GPU 
memory

GPU-aware MPI 
implementations

After 
2014 >= 6.0

• Unified Memory: shared memory 
between host and devices and 
automatic page migration

• The hardware takes care of 
moving data between host and 
device memories

• MPI optimizations are limited 
and need user hints

GPU-aware MPI 
implementations 

needed for 
performance



MPI + GPUDirect RDMA (Supported HW & SW)

§ Mellanox Host Channel Adapters (HCA):
– ConnectX-3, ConnectX-3 Pro, Connect IB, ConnectX-4, ConnectX-5

– MLNX_OFED v2.1-x.x.x or later

– Plugin Module to enable GPUDirect RDMA

§ NVIDIA GPUs:
– NVIDIA Tesla, Quadro K-Series or Tesla/Quadro P-Series

– NVIDIA Driver

– NVIDIA Runtime and Toolkit
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Radeon Open Compute Platform & 
Heterogeneous-compute Interface 

for Portability (ROCm & HIP)
(Thanks to Brad Benton from AMD for review and comments)

Slides Available at https://anl.box.com/v/balaji-tutorials-2019/

https://anl.box.com/v/balaji-tutorials-2018/


Overview
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§ General-purpose parallel computing 
platform and programming model released 
by AMD in 2016 as alternative to CUDA

§ Provides runtime library (ROCr), device 
drivers (ROCk) and C/C++ compiler (HCC)

§ HCC is invoked through hipcc wrapper script

§ HIP extensions for C/C++ language
– Define C functions to run on the GPU (kernels) 

using the __global__ declaration specifier

– Kernels can be launched with different number of 
threads using the <<<…>>> execution syntax or the 
hipLaunchKernelGGL API

– Each thread executing the kernel is given a unique 
thread ID accessible from inside the kernel using 
the built-in threadIdx variable

/* Kernel definition */
__global__ void gpu_kernel(double *in,

int size,
double *out)

{
/* get indices from thread id */
int i = threadIdx.x;
int j = threadIdx.y;

/* each thread performs work */
out[i][j] = f(in, i, j);

}

int main()
{
double *in_h, *out_h, *in_d, *out_d;
in_h = malloc(size);
out_h = malloc(size);
hipMalloc(&in_d, size);
hipMalloc(&out_d, size);

hipMemcpy(in_d, in_h, size,
hipMemcpyHostToDevice);

/* kernel invocation with N threads */
hipLaunchKernelGGL(gpu_kernel, dim3(2), 

dim3(N), 0, 0, in_d,
size, out_d);

hipMemcpy(out_h, out_d, size,
hipMemcpyDeviceToHost);

[...snip...]

return 0;
}



MPI + ROCmRDMA

§ Since ROCm 1.9.2 (Nov 2018) there is Peer-to-peer and RDMA 
MPI support for the Vega GPUs (GCN architecture)
– Including support for ROCmRDMA on Mellanox InfiniBand (PeerDirect) 

and support for GPU's data interaction in different nodes via MPI with 
HIP and OpenCL applications
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double *dev_buf;
hipMalloc(&dev_buf, size);

if(my_rank == sender) {
gpu_kernel<<<..>>>(dev_buf);
hipDeviceSynchronize();
MPI_Isend(dev_buf, size, MPI_DOUBLE, receiver, 0, comm, req);

} else {
MPI_Recv(dev_buf, size, MPI_DOUBLE, sender, 0, comm, &status);
gpu_kernel<<<..>>>(dev_buf);

}



ROCm Supported Hardware

§ Supported AMD GFX8 GPUs:
– Fiji chips: AMD Radeon R9 Fury X and Radeon Instinct MI8

– Polaris 10 chips: AMD Radeon RX 580 and Radeon Instinct MI6

– Polaris 11 chips: AMD Radeon RX 570 and Radeon Pro WX 4100

– Polaris 12 chips: AMD Radeon RX 550 and Radeon RX 540

§ Supported AMD GFX9 GPUs:
– Vega 10 chips: AMD Radeon RX Vega 64 and Radeon Instinct MI25

– Vega 7nm chips: AMD Radeon Instinct MI50, Radeon Instinct MI60 or 
Radeon VII

§ For the full list of supported hardware and software consult: 
https://github.com/RadeonOpenCompute/ROCm#new-
features-and-enhancements-in-rocm-24
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https://github.com/RadeonOpenCompute/ROCm


OpenCL & SYCL

(Thanks to Rod Burns from Codeplay for review and comments)
Slides Available at https://anl.box.com/v/balaji-tutorials-2019/

https://anl.box.com/v/balaji-tutorials-2018/


Overview

§ OpenCL is a low-level C/C++ based programming language for 
heterogeneous computing (CPUs, GPUs, FPGAs, DSPs):
– Platform Layer: discover devices with their capabilities and create 

contexts for managing and using them

– Runtime: manipulate contexts (create command queues, submit 
work, manage memory and kernels dependencies)

– Compiler: supports OpenCL C/C++ and other representations

§ SYCL is a single source high-level abstraction layer for OpenCL
– Hides a lot of the OpenCL platform layer and runtime details (e.g., 

platform discovery and explicit data movement)

– Takes advantage of C++ features like templatization, lambda functions 
and parallel constructs introduced by C++11 (e.g., parallel_for)
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Memory Management in OpenCL

§ OpenCL ≤ 1.2 host and device memory managed separately
– Device memory allocated using clCreateBuffer returns a cl_mem object that 

can be used by OpenCL (only) for data movement

§ OpenCL ≥ 2.0 host and device can share virtual memory (SVM)
– Coarse-grained sharing: used for memory and virtual pointer sharing between 

multiple devices as well as host and one or more devices (required)
• Device memory allocated through OpenCL SVM allocator (see next slide)

• Multiple kernels on the same device can safely access the same memory location

• Memory consistency is guaranteed at synchronization points

– Fine-grained sharing (optional in OpenCL, requires hardware support):
• Fine-grained buffer sharing: device memory, allocated through OpenCL SVM 

allocator, can be accessed by host directly → similar to cudaMallocManaged

• Fine-grained system sharing: similar but system allocated and managed

• Memory consistency for concurrent access to same area is guaranteed only if 
device supports atomics, undefined otherwise
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Shared Virtual Memory in OpenCL

§ Buffer shared memory allocated using clSVMAlloc
– Returned SVM pointer has to be passed to device kernels through 

clSetKernelArgSVMPointer

– Coarse-grained sharing: host can access device memory by mapping it 
to its address space through clEnqueueSVMMap and once done 
unmap it through clEnqueueSVMUnmap

– Fine-grained sharing: host can directly access device memory at the 
lowest granularity (only accessed pages are moved to host)

§ System shared memory allocated through malloc or mmap
– Host pointer has to be passed to device kernels through 

clSetKernelArgSVMPointer

– Can also pass the kernel the head of a linked list without passing every 
single node pointer explicitly (requires HMM support from HW & OS)
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OpenCL SVM Summary
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Coarse-grained Fine-grained

Buffer Allocation Sharing happens at the 
SVM buffer granularity

Sharing happens at the 
load/store granularity on 

the SVM buffer

System Allocation Not applicable

Sharing happens at the 
load/store granularity on 

any host allocated memory -
provided that the device has 

an explicit entry pointer 
(e.g., head of a linked list)

Memory Consistency
At synchronization points 
and clEnqueueSVMMap
/clEnqueueSVMUnmap)

If device does not support 
atomics concurrent accesses 

to same area result in 
undefined behavior



MPI + Coarse-Grained SVM in OpenCL (1/2)
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/* Coarse-grained sharing */
__kernel void gpu_kernel(__global double *buf)
{

[...snip...]
}

/* Create context, program, kernel, and command queue */ 
double *dev_buf;
dev_buf = clSVMAlloc(ctx, CL_MEM_READ_WRITE, size, 0);

clSetKernelArgSVMPointer(kernel, 0, dev_buf);

if(my_rank == sender) {
clEnqueueNDRangeKernel(queue, kernel, …);
clEnqueueSVMMap(queue, CL_TRUE, CL_MAP_READ, dev_buf, …);
MPI_Isend(dev_buf, size, MPI_DOUBLE, receiver, 0, comm, req);
clEnqueueSVMUnmap(queue, dev_buf, …);

} else {
clEnqueueSVMMap(queue, CL_TRUE, CL_MAP_READ, dev_buf, …);
MPI_Recv(dev_buf, size, MPI_DOUBLE, sender, 0, comm, &status);
clEnqueueSVMUnmap(queue, dev_buf, …, &event);
clEnqueueNDRangeKernel(queue, kernel, …, 1, &event, …);

}

Block until mapping is done

Dependency/Synchronization



MPI + Coarse-Grained SVM in OpenCL (2/2)
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§ Host and device can share virtual memory, however
– The specification does not define the behavior if host tries accessing 

shared memory without first mapping it (the behavior is 
implementation specific)

• Since coarse-grained sharing support is mandatory, implementations do 
not have to rely on any specific hardware memory management feature

• One implementation can chose to allocate a host buffer and a hidden 
device buffer and use the same virtual address for both, moving data on 
demand (at Map/Unmap and/or synchronization points)

– The specification does not define any query API that third party 
libraries can use to discover SVM pointers (no clPointerGetAttribute
type of interface)

• MPI implementations cannot make any assumption on the nature of the 
pointers given by the user



Memory Management in SYCL

§ Like OpenCL, SYCL kernels are ran asynchronously

§ Unlike OpenCL, SYCL does not require the user to explicitly 
manage data dependencies and synchronization

§ The SYCL runtime provides memory consistency by 
automatically handling data dependencies

§ In order to do so SYCL defines:
– Buffers represent memory allocated using default or user defined 

allocators

– Accessors define access modes (read, write, read_write, …) to buffers 
providing SYCL with all the information it needs to manage memory 
access dependencies
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Shared Virtual Memory in SYCL

§ Introduced in SYCL 2.0

§ Specification is not yet finalized and is therefore still evolving

§ Eventually will provide same SVM functionalities as OpenCL ≥ 
2.0
– Coarse-grained Buffer

– Fine-grained
• Buffer

• System
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OpenCL ≥ 2.0 Vendor Support

§ AMD ROCm 2.0: 
– https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime

§ NVIDIA driver 378.66 (beta for evaluation): 
– https://www.nvidia.com/download/driverResults.aspx/115492/en-us

§ Intel SDK for OpenCL Applications: 
– https://software.intel.com/en-us/intel-opencl

§ POCL:
– http://portablecl.org/index.html

§ Currently no vendor supports GPUDirect RDMA like features 
using SVM
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SYCL Implementations

§ Intel contribution to the LLVM Clang compiler for SYCL 
– https://github.com/intel/llvm/tree/sycl

§ triSYCL (v1.2.1)
– https://github.com/triSYCL/triSYCL

§ hipSYCL (v1.2.1)
– https://github.com/illuhad/hipSYCL

§ sycl-gtx (v1.2.1)
– https://github.com/proGTX/sycl-gtx

§ ComputeCpp (v1.2.1)
– https://www.codeplay.com/products/computesuite/computecpp
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OpenMP

(Thanks to Shintaro Iwasaki from Argonne National Laboratory for review and comments)
Slides Available at https://anl.box.com/v/yguo-isc-tutorial-2021

https://anl.box.com/v/yguo-isc-tutorial-2021


Overview

§ OpenMP is a multi-platform shared 
memory and multi-threaded 
programming model for C/C++ and 
Fortran programs providing:
– Compiler directives for SPMD, tasking, 

device offload, worksharing and 
synchronization

– OpenMP API runtime library routines 
to control execution environment, 
synchronization, timing, …

§ Support for additional devices 
(a.k.a. targets) is also available 
starting with V4.0
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double A[N], B[N], C[N];

for (int i = 0; i < N; i++)
/* Initialize A and B */

/* Do vector addition on host */
#pragma omp parallel for
for (int i = 0; i < N; i++)

C[i] = A[i] + B[i];

double A[N], B[N], C[N];

for (int i = 0; i < N; i++)
/* Initialize A and B */

/* Do vector addition on device */
#pragma omp target
#pragma omp teams num_teams(M)
#pragma omp distribute
for (int i = 0; i < N; i += N/M)

#pragma omp parallel for
for (int j = i; j < i + N/M; j++)

C[j] = A[j] + B[j];



Memory Management in OpenMP (1/2)

§ Host and Target memories are separate and managed by the 
host using Data Environments (no SVM exposed in OpenMP)

§ A Data Environment encompasses all the variables referenced 
in a task or worksharing construct and their access attributes 
relatively to the thread (these includes the usual suspects like 
private, shared, firstprivate, …)

§ OpenMP defines clauses for moving data across the Data 
Environment of the host device and the target devices 
(accelerators) identified by the target construct:
– map(map-type: list): copies data from/to the data environment of the 

task running on the host to/from a device target data environment

– map-type: can be to | from | tofrom | alloc
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Memory Management in OpenMP (2/2)

§ When target code has to run multiple times on the same 
data, data movement between host device and target can be 
minimized using the target data directive covering a 
structured block 

– similar construct is target (enter | exit) data defining arbitrary scope
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#pragma omp target data map(to: X[0:N]) /* Get X to device and keep it there */
{
#pragma omp target map(from: Y[0:N])    /* Put Y to host data environment */
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for
for (int i = 0; i < N; i++)

/* Compute Y[i] = f(X,i) */

/* Use Y in host */

#pragma omp target map(from: Y[0:N])    /* Put Y to host data environment */
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for
for (int i = 0; i < N; i++)

/* Compute Y[i] = g(X,i);
}



MPI + OpenMP
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double *X = malloc(sizeof(double) * N);
double *Y = malloc(sizeof(double) * N);
double *Z = malloc(sizeof(double) * N);

#pragma omp target data map(to: X[0:N]) /* Get X to device and keep it there */
{
#pragma omp target map(from: Y[0:N])    /* Put Y to host data environment */
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for
for (int i = 0; i < N; i++)

/* Compute Y[i] = f(X,i) */

/* Use Y in host */

#pragma omp target map(from: Y[0:N])    /* Put Y to host data environment */
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for
for (int i = 0; i < N; i++)

/* Compute Y[i] = g(X,i) */
}
MPI_Allreduce(Y, Z, N, MPI_DOUBLE, MPI_SUM, comm);

§ OpenMP makes no assumption on how data movement is 
done (e.g., HMM capable systems do not require copies)



Example: stencil_omp

§ accelerators/stencil_omp.c

§ Solves the same stencil problem presented for point-to-point 
moving computation to accelerators using OpenMP targets
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Summary

§ Accelerators are becoming increasingly important

§ MPI is playing its role in enabling the usage of accelerators 
across distributed memory nodes

§ The situation with MPI + GPU support is improving in both 
MPI implementations and in GPU hardware/software 
capabilities
– For CUDA and ROCm P2P/RDMA support from GPU memory is 

enabled for contiguous datatypes through the UCX driver

– For OpenCL/SYCL SVM can potentially enable similar optimizations as 
CUDA/ROCm but at the current state no such support is available and 
data movement between host and device memory is still required

– For OpenMP/OpenACC data movement is managed through directives
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Nonblocking Collectives
Slides Available at https://anl.box.com/v/yguo-isc-tutorial-2021

https://anl.box.com/v/yguo-isc-tutorial-2021


§ Nonblocking (send/recv) communication
– Deadlock avoidance

– Overlapping communication/computation

§ Collective communication
– Collection of pre-defined optimized routines

§ à Nonblocking collective communication
– Combines both techniques

– System noise/imbalance resiliency

– Semantic advantages
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Nonblocking Collective Communication



Nonblocking Collective Communication

§ Nonblocking variants of all collectives
– MPI_Ibcast(<bcast args>, MPI_Request *req);

§ Semantics
– Function returns no matter what
– No guaranteed progress (quality of implementation)
– Usual completion calls (wait, test) + mixing
– Out-of order completion

§ Restrictions
– Send and vector buffers may not be updated during operation (like other 

nonblocking operations)
– No tags, in-order matching (like other collective operations)
– MPI_Cancel not supported
– No matching with blocking collectives
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Nonblocking Collective Communication

§ Semantic advantages
– Enable asynchronous progression (and manual)

• Software pipelining

– Decouple data transfer and synchronization
• Noise resiliency!

– Allow overlapping communicators
• See also neighborhood collectives

– Multiple outstanding operations at any time
• Enables pipelining window
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Nonblocking Collectives Overlap

§ Software pipelining
– More complex parameters 

– Progression issues

– Not scale-invariant
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A Nonblocking Barrier?

§ Semantics:
– MPI_Ibarrier() – calling process entered the barrier, no

synchronization happens

– Synchronization may happen asynchronously

– MPI_Test/Wait() – synchronization happens if necessary

§ Uses: 
– Overlap barrier latency (small benefit)

– Use the split semantics!  Processes notify noncollectively but 
synchronize collectively!
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A Semantics Example: DSDE

§ Dynamic Sparse Data Exchange
– Dynamic: comm. pattern varies across 

iterations
– Sparse: number of neighbors is limited 

(O(log P))
– Data exchange: only senders know 

neighbors
§ Main Problem: metadata

– Determine who wants to send how much
data to me 
(I must post receive and reserve memory)

OR:
– Use MPI semantics:

• Unknown sender (MPI_ANY_SOURCE)
• Unknown message size (MPI_PROBE)
• Reduces problem to counting the number

of neighbors 
• Allow faster implementation!
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Using Alltoall (PEX) 

§ Based on Personalized 
Exchange (            )
– Processes exchange metadata 

(sizes)  about neighborhoods 
with all-to-all

– Processes post receives 
afterwards

– Most intuitive but least 
performance and scalability
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Reduce_scatter (PCX)

§ Based on Personalized Census
(             )

– Processes exchange
metadata (counts) about 
neighborhoods with
reduce_scatter

– Receivers checks with
wildcard MPI_IPROBE
and receives messages

– Better than PEX but
non-deterministic!
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§ Complexity - census (barrier):

(                     )
– Combines metadata with actual 

transmission

– Point-to-point synchronization

– Continue receiving until barrier 
completes

– Processes start collective 
synchronization (ibarrier) when p2p 
phase ended

• barrier = distributed marker!

– Better than Alltoall, reduce-scatter!
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Parallel Breadth First Search

§ On a clustered Erdős-Rényi graph, weak scaling
– 6.75 million edges per node (filled 1 GiB)

BlueGene/P – with HW barrier! Myrinet 2000 with LibNBC
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Impact of HW barrier is significant at 
large scale!



Parallel Fast Fourier Transform

§ 1D FFTs in all three dimensions
– Assume 1D decomposition (each process holds a set of planes)

– Best way: call optimized 1D FFTs in parallel à alltoall
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A Complex Example: FFT

for(int x=0; x<n/p; ++x) 1d_fft(/* x-th stencil */);

/* pack data for alltoall */
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

/* unpack data from alltoall and transpose */

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

/*  pack data for alltoall */
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

/* unpack data from alltoall and transpose */

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications
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Parallel Fast Fourier Transform

§ Data already transformed in y-direction 
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Parallel Fast Fourier Transform

§ Transform first y plane in z
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Parallel Fast Fourier Transform

§ Start ialltoall and transform second plane
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Parallel Fast Fourier Transform

§ Start ialltoall (second plane) and transform third
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Parallel Fast Fourier Transform

§ Start ialltoall of third plane and …
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Parallel Fast Fourier Transform

§ Finish ialltoall of first plane, start x transform
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Parallel Fast Fourier Transform

§ Finish second ialltoall, transform second plane
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Parallel Fast Fourier Transform

§ Transform last plane → done
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FFT Software Pipelining

Advanced MPI, ISC21 (06/24/2021-06/25/2021) 222

MPI_Request req[nb];

for(int b=0; b<nb; ++b) { /* loop over blocks */
for(int x=b*n/p/nb; x<(b+1)n/p/nb; ++x) 1d_fft(/* x-th stencil*/);

/* pack b-th block of data for alltoall */
MPI_Ialltoall(&in, n/p*n/p/bs, cplx_t, &out, n/p*n/p, cplx_t, comm, &req[b]);

}

MPI_Waitall(nb, req, MPI_STATUSES_IGNORE);

/* modified unpack data from alltoall and transpose */
for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);
/* pack data for alltoall */

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
/* unpack data from alltoall and transpose */

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications



Exercise: Stencil with Nonblocking Collectives

§ Use nonblocking collective to overlap computation and 
communication
– Compute inner grid while waiting for completion of data movement

– Compute outer grid with updated halo regions

§ Start from derived_datatype/stencil_alltoallw.c

§ Solution available in nonblocking_coll/stencil_alltoallw.c
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Computation of inner 
grid does not need halo 
regions

Halo regions



Section Summary

§ Nonblocking collectives combine the semantics of 
nonblocking point-to-point and blocking collectives

§ Natural extension to blocking collectives for event-driven 
programming

§ Hardware implementations already exist for most (but not all) 
nonblocking collectives
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Virtual Topologies and
Neighborhood Collectives

Slides Available at https://anl.box.com/v/yguo-isc-tutorial-2021

https://anl.box.com/v/yguo-isc-tutorial-2021


Topology Mapping and Neighborhood Collectives

§ Topology mapping basics
– Allocation mapping vs. rank reordering

– Ad-hoc solutions vs. portability

§ MPI topologies
– Cartesian

– Distributed graph

§ Collectives on topologies – neighborhood collectives
– Use cases

226Advanced MPI, ISC21 (06/24/2021-06/25/2021)



Topology Mapping Basics

§ MPI supports rank reordering 
– Change numbering in a given allocation to reduce congestion or 

dilation

– Sometimes automatic (early IBM SP machines)

§ Properties
– Always possible, but effect may be limited (e.g., in a bad allocation)

– Portable way: MPI process topologies
• Network topology is not exposed

– Manual data shuffling after remapping step
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Example: On-Node Reordering

Gottschling et al.: Productive Parallel Linear Algebra Programming with Unstructured Topology Adaption
228Advanced MPI, ISC21 (06/24/2021-06/25/2021)
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Off-Node (Network) Reordering
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MPI Topology Intro

§ Convenience functions (in MPI-1)
– Create a graph and query it, nothing else

– Useful especially for Cartesian topologies
• Query neighbors in n-dimensional space

– Graph topology: each rank specifies full graph L

§ Scalable Graph topology (MPI-2.2)
– Graph topology: each rank specifies its neighbors or an arbitrary 

subset of the graph

§ Neighborhood collectives (MPI-3.0)
– Adding communication functions defined on graph topologies 

(neighborhood of distance one)
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MPI_Cart_create

§ Specify ndims-dimensional topology
– Optionally periodic in each dimension (Torus)

§ Some processes may return MPI_COMM_NULL
– Product sum of dims must be <= P

§ Reorder argument allows for topology mapping
– Each calling process may have a new rank in the created communicator

– Data has to be remapped manually
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MPI_Cart_create(MPI_Comm comm_old, int ndims, const int *dims,
const int *periods, int reorder, MPI_Comm *comm_cart)



MPI_Cart_create Example

§ Creates logical 3D Torus of size 5 x 5 x 5

§ But we’re starting MPI processes with a one-dimensional 
argument (-p X)
– User has to determine size of each dimension

– Often as “square” as possible, MPI can help!
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int dims[3] = {5,5,5};
int periods[3] = {1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);



MPI_Dims_create

§ Create dims array for Cart_create with nnodes and ndims
– Dimensions are as close as possible (well, in theory)

§ Non-zero entries in dims will not be changed
– nnodes must be multiple of all non-zeroes
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MPI_Dims_create(int nnodes, int ndims, int *dims)



MPI_Dims_create Example

§ Makes life a little bit easier
– Some problems may be better with a non-square layout though
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int p;
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Dims_create(p, 3, dims);

int periods[3] = {1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);



Cartesian Query Functions

§ Library support and convenience!

§ MPI_Cartdim_get()
– Gets dimensions of a Cartesian communicator

§ MPI_Cart_get()
– Gets size of dimensions

§ MPI_Cart_rank()
– Translate coordinates to rank

§ MPI_Cart_coords()
– Translate rank to coordinates
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Cartesian Communication Helpers

§ Shift in one dimension
– Dimensions are numbered from 0 to ndims-1

– Displacement indicates neighbor distance (-1, 1, …)

– May return MPI_PROC_NULL

§ Very convenient, all you need for nearest neighbor 
communication
– No “over the edge” though
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MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)



Example: Stencil with Cartesian Topology

§ topology/stencil_carttopo.c

§ Adds calculation of neighbors with topology
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MPI_Graph_create(MPI_Comm comm_old, int nnodes,
const int *index, const int *edges, int reorder,
MPI_Comm *comm_graph)

MPI_Graph_create

§ Don’t use!!!!!

§ nnodes is the total number of nodes

§ index i stores the total number of neighbors for the first i
nodes (sum)
– Acts as offset into edges array

§ edges stores the edge list for all processes
– Edge list for process j starts at index[j] in edges

– Process j has index[j+1]-index[j] edges
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Distributed graph constructor

§ MPI_Graph_create is discouraged
– Not scalable

– Not deprecated yet but hopefully soon

§ New distributed interface:
– Scalable, allows distributed graph specification

• Either local neighbors or any edge in the graph

– Specify edge weights
• Meaning undefined but optimization opportunity for vendors!

– Info arguments
• Communicate assertions of semantics to the MPI library

• E.g., semantics of edge weights
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MPI_Dist_graph_create_adjacent

§ indegree, sources, ~weights – source proc. Spec.
§ outdegree, destinations, ~weights – dest. proc. spec.

§ info, reorder, comm_dist_graph – as usual
§ directed graph

§ Each edge is specified twice, once as out-edge (at the source) 
and once as in-edge (at the dest)
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MPI_Dist_graph_create_adjacent(MPI_Comm comm_old,
int indegree, const int sources[], const int sourceweights[],
int outdegree, const int destinations[],
const int destweights[], MPI_Info info, int reorder,
MPI_Comm *comm_dist_graph)



MPI_Dist_graph_create_adjacent

§ Process 0:
– Indegree: 0

– Outdegree: 2

– Dests: {3,1}

§ Process 1:
– Indegree: 3

– Outdegree: 2

– Sources: {4,0,2}

– Dests: {3,4}

§ …
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MPI_Dist_graph_create

§ n – number of source nodes
§ sources – n source nodes 

§ degrees – number of edges for each source
§ destinations, weights – dest. processor specification

§ info, reorder – as usual
§ More flexible and convenient 

– Requires global communication

– Slightly more expensive than adjacent specification
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MPI_Dist_graph_create(MPI_Comm comm_old, int n,
const int sources[], const int degrees[],
const int destinations[], const int weights[], MPI_Info info,
int reorder, MPI_Comm *comm_dist_graph)



MPI_Dist_graph_create

§ Process 0:
– N: 2

– Sources: {0,1}

– Degrees: {2,1} *

– Dests:  {3,1,4}

§ Process 1:
– N: 2

– Sources: {2,3}

– Degrees: {1,1}

– Dests: {1,2}

§ …

243

* Note that in this example, process 0 specifies only one of the two outgoing edges
of process 1; the second outgoing edge needs to be specified by another process

Advanced MPI, ISC21 (06/24/2021-06/25/2021)

2

3

4

0
1

5



Distributed Graph Neighbor Queries

§ Query the number of neighbors of calling process
§ Returns indegree and outdegree!
§ Also info if weighted
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§ Query the neighbor list of calling process

§ Optionally return weights

MPI_Dist_graph_neighbors_count(MPI_Comm comm,
int *indegree,int *outdegree, int *weighted)

MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree,
int sources[], int sourceweights[], int maxoutdegree,
int destinations[],int destweights[])



Further Graph Queries

§ Status is either:
– MPI_GRAPH (ugs)

– MPI_CART

– MPI_DIST_GRAPH

– MPI_UNDEFINED (no topology)

§ Enables us to write libraries on top of MPI topologies!
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MPI_Topo_test(MPI_Comm comm, int *status)



Neighborhood Collectives 

§ Topologies implement no communication!
– Just helper functions

§ Collective communications only cover some patterns
– E.g., no stencil pattern

§ Several requests for “build your own collective” functionality in 
MPI
– Neighborhood collectives are a simplified version

– Cf. Datatypes for communication patterns!
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Cartesian Neighborhood Collectives

§ Communicate with direct neighbors in Cartesian topology
– Corresponds to cart_shift with disp=1

– Collective (all processes in comm must call it, including processes 
without neighbors)

– Buffers are laid out as neighbor sequence:
• Defined by order of dimensions, first negative, then positive

• 2*ndims sources and destinations

• Processes at borders (MPI_PROC_NULL) leave holes in buffers (will not be 
updated or communicated)!
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Cartesian Neighborhood Collectives

§ Buffer ordering example:
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Graph Neighborhood Collectives

§ Collective Communication along arbitrary neighborhoods
– Order is determined by order of neighbors as returned by 

(dist_)graph_neighbors.

– Distributed graph is directed, may have different numbers of 
send/recv neighbors

– Can express dense collective operations

– Any persistent communication pattern!
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MPI_Neighbor_allgather

§ Sends the same message to all neighbors

§ Receives indegree distinct messages

§ Similar to MPI_Gather
– The all prefix expresses that each process is a “root” of his 

neighborhood

§ Vector version for full flexibility
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MPI_Neighbor_allgather(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)



MPI_Neighbor_alltoall

§ Sends outdegree distinct messages

§ Received indegree distinct messages

§ Similar to MPI_Alltoall
– Neighborhood specifies full communication relationship

§ Vector and w versions for full flexibility
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MPI_Neighbor_alltoall(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)



Nonblocking Neighborhood Collectives

§ Very similar to nonblocking collectives

§ Collective invocation

§ Matching in-order (no tags)
– No wild tricks with neighborhoods! In order matching per 

communicator!
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MPI_Ineighbor_allgather(…, MPI_Request *req);
MPI_Ineighbor_alltoall(…, MPI_Request *req);



Exercise: Stencil with Neighborhood Collectives

§ Adds neighborhood collectives to the topology

§ Start from topology/stencil_carttopo.c and 
derived_datatype/stencil_alltoallw.c

§ Solution available in topology/stencil_carttopo_neighcolls.c
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Why is Neighborhood Reduce Missing?

§ Was originally proposed (see original paper)

§ High optimization opportunities
– Interesting tradeoffs!

– Research topic

§ Not standardized due to missing use cases
– My team is working on an implementation

– Offering the obvious interface
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MPI_Ineighbor_allreducev(…, MPI_Request *req);
MPI_Neighbor_allreducev(…);



Section Summary

§ MPI does not expose information about the network topology 
(would be very complex)

§ Topology functions allow users to specify application 
communication patterns/topology
– Convenience functions (e.g., Cartesian)

– Storing neighborhood relations (Graph)

§ Neighborhood collectives allow user virtual topologies to be 
exploited in collective communication
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MPI-4 and Future MPI Standards

Slides Available at https://anl.box.com/v/yguo-isc-tutorial-2021

https://anl.box.com/v/yguo-isc-tutorial-2021


Introduction

§ The MPI Forum continues to meet every 3 months to define 
future versions of the MPI Standard

§ We describe some of the proposals the Forum is currently 
considering

§ None of these topics are guaranteed to be in MPI-4
– These are simply proposals that are being considered
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MPI Working Groups

§ Point-to-point communication

§ Fault tolerance

§ Hybrid programming

§ Persistence

§ Tools interfaces

§ Large counts

§ Others: RMA, Collectives, Fortran, Topologies, Sessions

§ https://www.mpi-forum.org/mpi-40/
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Point-to-Point Working Group
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Proposal 1: Batched Communication Operations

§ MPI-3.1 semantics
– Each point-to-point operation creates a new request object

– MPI library might run out of request objects after a few thousand 
operations

– Application cannot issue a lot of messages to fully utilize the network

§ Batched operations
– RMA-like semantics for MPI send/recv communication

• Application frees request as soon as the operation is issued

• Batch completion of all operations on a communicator

– MPI_COMM_WAITALL

– Proportionally reduced number of requests

– Can allow applications to consolidate multiple completions into a 
single request
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Proposal 2: Communication Relaxation Hints

§ mpi_assert_no_any_tag
– The process will not use MPI_ANY_TAG

§ mpi_assert_no_any_source
– The process will not use MPI_ANY_SOURCE

§ mpi_assert_exact_length
– Receive buffers must be correct size for messages

§ mpi_assert_overtaking_allowed
– All messages are logically concurrent
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Fault Tolerance Working Group
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Improved Support for Fault Tolerance

§ MPI always had support for error handlers and allows 
implementations to return an error code and remain alive

§ MPI Forum working on additional support for MPI-4

§ Current proposal handles fail-stop process failures (not 
silent data corruption or Byzantine failures)
§ If a communication operation fails because the other process has 

failed, the function returns error code MPI_ERR_PROC_FAILED

§ User can call MPI_Comm_shrink to create a new communicator 
that excludes failed processes

§ Collective communication can be performed on the new 
communicator
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Proposal 1: Noncatastrophic Errors

§ Currently the state of MPI is undefined if any error occurs

§ Even simple errors, such as incorrect arguments, can cause 
the state of MPI to be undefined

§ Noncatastrophic errors are an opportunity for the MPI 
implementation to define some errors as “ignorable”

§ For an error, the user can query if it is catastrophic or not

§ If the error is not catastrophic, the user can simply pretend 
like (s)he never issued the operation and continue
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Proposal 2: User Level Failure Mitigation

§ Enable application-level recovery by providing minimal FT API 
to prevent deadlock and enable recovery

§ Don’t do recovery for the application, but let the application 
(or a library) do what is best

§ Currently focused on process failure (not data errors or 
protection)
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Hybrid Programming Working Group
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MPI endpoints

§ Idea is to have multiple addressable communication entities 
within a single MPI process
– Instantiated in the form of multiple ranks per MPI process

§ Each rank can be associated with one or more threads

§ Reduced contention for communication on each “rank”

§ In the extreme case, we could have one rank per thread (or 
some ranks might be used by a single thread)
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Implementation phases/options

§ Most common current approach
– Single endpoint per MPI process

– Worst case contention

§ Possible optimization in MPI-3.1: 
multiple invisible endpoints
– Multiple internal endpoints (BG/Q style)

– Transparent to the user

– E.g. one endpoint per comm, per 
neighbor process (regular apps)

§ Endpoints proposal for MPI-4: 
multiple user-visible endpoints
– Multiple endpoints managed by the user

Advanced MPI, ISC21 (06/24/2021-06/25/2021) 268

Hardware

Application

MPI

CTX 

User Endpoint

Hardware

Application

MPI

CTX 

User Endpoint

CTX 

Hardware

Application

MPI

CTX 

User Endpoint

CTX 

User EndpointUser Endpoint

Hardware

Application

MPI

CTX 

User Endpoint



Persistence Working Group
(Slides courtesy of Tony Skjellum)
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Persistent Collectives

§ Similar to, but not exactly the same as regular nonblocking
collective operations

§ For each nonblocking MPI collective, add a persistent variant

§ For every MPI_I<coll>, add MPI_<coll>_init

§ Parameters are identical to the corresponding nonblocking 
variant – plus additional MPI_INFO parameter

§ All arguments “fixed” for subsequent uses

§ Persistent collective operations cannot be matched with 
blocking or nonblocking collective calls
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Persistent Collectives Example
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for (i = 0; i < MAXITER; i++) {
compute(bufA);
MPI_Ibcast(bufA, …, rowcomm, &req[0]);
compute(bufB);

MPI_Ireduce(bufB, …, colcomm, &req[1]);
MPI_Waitall(2, req, …);

}

MPI_Bcast_init(bufA, …, rowcomm, &req[0]);
MPI_Reduce_init(bufB, …, colcomm, &req[1]);
for (i = 0; i < MAXITER; i++) {

compute(bufA);

MPI_Start(req[0]);
compute(bufB);
MPI_Start(req[1]);
MPI_Waitall(2, req, …);

}

Nonblocking collectives API

Persistent collectives API
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RMA Working Group
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MPI Generalized Atomics

§ MPI-3 atomic operations are, in some cases, restrictive and 
are not precisely defined

§ Two proposals:
– Clarify what operations are atomic and what are not (minor change)

– Allow for generality of atomic operations with room for performance 
optimization

§ Generality: Ability for different atomic operations to be issued 
on the same target location

§ Performance: Additional info hints to restrict what the user 
will use (e.g., only CAS, only FOP, only basic datatypes)

https://github.com/mpi-forum/mpi-forum-historic/issues/416
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Neighborhood Communication in MPI RMA

§ MPI-3 defined neighborhood collectives where a process only 
communicates with its neighbors

§ Neighborhood RMA is a generalization of that concept to 
allow RMA to neighboring processes
– Allows MPI implementations to optimize state that is internally 

managed

– Primarily an optimization for memory usage (e.g., MPI does not need 
to store information about non-neighbor processes)

• Can also improve performance in some rare cases
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Nonblocking RMA Synchronization

§ RMA communication operations are nonblocking

§ Some RMA synchronization operations are blocking
– E.g., MPI_WIN_FENCE after issuing several PUT/GET operations

§ Interferes with event-driven applications that want to process 
completion events as they occur
– E.g., MPI_Waitany(…) followed by a handler to process whichever 

request completed

– Can be done with threads where a thread blocks on call and then 
sends a “notification” message to unblock the MPI_Waitany

• Cumbersome and requires a different thread for each simultaneously 
blocking operation

§ Proposal: Nonblocking variants of synchronization operations
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RMA Notification

§ In passive target mode, notifying the target that data has 
been transmitted is currently inefficient

§ Two proposals for target notification:
– Notification on PUT/GET

– Notification on Flush

§ Idea is to notify the target when the data has been deposited 
into the target public memory

https://github.com/mpi-forum/mpi-issues/issues/59
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Tools Working Group
(slides courtesy Kathryn Mohror, LLNL)
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What’s happening now?

§ Variables
– MPI_T Variable Registration

§ QMPI
– A new interception interface for MPI

§ Events
– Get event notification from MPI
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MPI_T Variable registration

§ MPI implementations are free to provide whatever variables make sense 
for their implementation

– Variables are allowed to change between versions of the library and across 
hardware

– Want to provide some stability for tools and keep the freedom for 
implementations

§ Organization IDs and variable identifiers registered with MPI Forum
– API for retrieving runtime variable ID to permanent registered ID

– Now tool has a stable ID for understanding the meaning of MPI_T variables
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QMPI: New interface for layered tools

MPI App

Tool 1 (profiler) / top 

Tool 2 (tracer) / top

Real MPI routine

Tool 2 (tracer) / bottom

Tool 1 (profiler) / bottom

MPI App MPI_Send(…){
++sends;
ret = PMPI_Send(…);
return ret;

} 

MPI_Send(…){
++sends;
pmpi_next_send = get_fn_ptr();
ret = pmpi_next_send(…);

return ret;
} 



The inspiration for MPI_T_events comes from 
PERUSE

Advanced MPI, ISC21 (06/24/2021-06/25/2021)

Could affect 
performance of 

MPI

If I don’t support it 
am I still a “high 

quality 
implementation”?

Callback based 
API challenging 
to define well Defined events 

too restrictive
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Sessions Working Group
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New Concept: “Session”

§ A local handle to the MPI library
– Implementation intent: lightweight / uses very few resources

– Can also cache some local state

§ Can have multiple sessions in an MPI process
– MPI_Session_init(…, &session);

– MPI_Session_finalize(…, &session);

§ Each session is a unit of isolation

ocean library

MPI_SESSION_INIT

atmosphere library

MPI_SESSION_INIT

MPI library

ocean 
session

atmosphere 
session

Unique handles to the 
underlying MPI library

Unique 
errhandlers, 

thread-levels, 
info, local 
state, etc.
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Overview

§ General scheme:
– Query the underlying run-

time system
• Get a “set” of processes

– Determine the processes you 
want

• Create an MPI_Group

– Create a communicator with 
just those processes

• Create an MPI_Comm

Query runtime
for set of processes

MPI_Group

MPI_Comm

MPI_Session
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Concluding Remarks

§ Parallelism is critical today, given that that is the only way to 
achieve performance improvement with the modern hardware

§ MPI is an industry standard model for parallel programming
– A large number of implementations of MPI exist (both commercial and 

public domain)

– Virtually every system in the world supports MPI

§ Gives user explicit control on data management

§ Widely used by many many scientific applications with great 
success

§ Your application can be next!
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Web Pointers
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§ MPI standard : http://www.mpi-forum.org/docs/docs.html

§ MPI Forum : http://www.mpi-forum.org/

§ MPI implementations: 
– MPICH : http://www.mpich.org

– MVAPICH : http://mvapich.cse.ohio-state.edu/

– Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI: www.microsoft.com/en-us/download/details.aspx?id=39961

– Open MPI : http://www.open-mpi.org/

– IBM MPI, Cray MPI, HP MPI, TH MPI, …

§ Several MPI tutorials can be found on the web

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library/
http://www.microsoft.com/en-us/download/details.aspx?id=39961
http://www.open-mpi.org/


Tutorial Books on MPI
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Basic MPI Advanced MPI, including MPI-3
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Book on Parallel Programming Models
Edited by Pavan Balaji
• MPI: W. Gropp and R. Thakur
• GASNet: P. Hargrove
• OpenSHMEM: J. Kuehn and S. Poole
• UPC: K. Yelick and Y. Zheng
• Global Arrays: S. Krishnamoorthy, J. Daily, A. Vishnu, 

and B. Palmer
• Chapel: B. Chamberlain
• Charm++: L. Kale, N. Jain, and J. Lifflander
• ADLB: E. Lusk, R. Butler, and S. Pieper
• Scioto: J. Dinan
• SWIFT: T. Armstrong, J. M. Wozniak, M. Wilde, and I. 

Foster
• CnC: K. Knobe, M. Burke, and F. Schlimbach
• OpenMP: B. Chapman, D. Eachempati, and S. 

Chandrasekaran
• Cilk Plus: A. Robison and C. Leiserson
• Intel TBB: A. Kukanov
• CUDA: W. Hwu and D. Kirk
• OpenCL: T. Mattson

https://mitpress.mit.edu/books/programming-models-
parallel-computing
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