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The Artificial Intelligence Revolution

Adopted from:
http://www.deeplearningbook.org/contents/intro.html

AI

Machine 
Learning 

(ML)

Examples:

Logistic 
Regression

• Artificial Intelligence (AI) is the science of training
machines to perform human tasks.

– “Human intelligence exhibited by machines”

• Common use cases
– Object recognition 

– Speech recognition / sound detection

– Natural Language Processing 

– Health Systems

– Marketing / Advertisements 

• Learning by example / pattern
– Machine Learning 

– Deep Learning 

Deep 
Learning (DL)

Examples:

MLPs, DNNs,

http://www.deeplearningbook.org/contents/intro.html
mailto:panda@cse.ohio-state.edu
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History: Milestones in the Development of Neural Networks

Courtesy: https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

1940 1950 1960 1970 1980 1990 2000 2010 2020

Electronic
Brain

1943

Perceptron

1957

ADALINE

1960

XOR 
Problem

Golden 
Age

1969

Multi-layered 
Perceptron

(Backpropagation)

1986

Dark Age 
(“AI Winter”)

DBN

2006

AlexNet

2012

ResNet

2015

WGAN

2017

Transformers

K-Means

1965

Bayesian 
Network

1985

Decision Trees

1979

SVM

1995

KNN

1967

1800 1900 ….

Linear 
Regression

1805

Turing Machine

1936

Evolutionary 
Algorithms

1954

Random Forest

2000

PCA

1901

XGBoost

2014

CatBoost

Deep 
Forest

2017

S. McCulloch – W. Pitts F. Rosenblatt B. Widrow – M. Hoff M. Minsky – S. Papert D. Rumelhart – G. Hinton – R. WiliamsA. Legendre – J. Gauss A. TuringK. Pearson J. Pearl V. Vapnik– C. Cortes A. Ng Y. LeCunA. Krizhevsky Y. Bengio

https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html
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What is Deep Learning?

Courtesy: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-
and-deep-learning-1pcv3zeg, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning

• Deep Learning (DL)

– A subset of Machine Learning that uses 
Deep Neural Networks (DNNs)

– Perhaps, the most revolutionary subset! 

• Based on learning data representation 

• Examples Convolutional Neural Networks, 
Recurrent Neural Networks, Hybrid 
Networks

• Data Scientist or Developer Perspective

1. Identify DL as solution to a problem

2. Determine Data Set

3. Select Deep Learning Algorithm to Use

4. Use a large data set to train an 
algorithm

https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
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Deep Learning and High-Performance Architectures

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/

• NVIDIA GPUs are the main driving force for faster training of DL models
– The ImageNet Challenge - (ILSVRC) -- 90% of the teams used GPUs (2014)*
– Deep Neural Networks (DNNs) like ResNet(s) and Inception

• However, High Performance Architectures for DL and HPC are evolving
– 110/500 Top HPC systems use NVIDIA Volta GPUs (Nov ’20)
– DGX-1 (Pascal) and DGX-2 (Volta)

• Dedicated DL supercomputers
– Cascade-Lake Xeon CPUs have 28 cores/socket (TACC Frontera– #9 on Top500)
– AMD EPYC (Rome) CPUs have 64 cores/socket
– AMD GPUs will be powering Frontier – DOE’s Exascale System at ORNL
– Domain Specific Accelerators for DNNs are also emerging

Accelerator/CP 
Performance Share 

www.top500.org

https://blogs.nvidia.com/blog/2014/09/07/imagenet/
http://www.top500.org/
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Deep Learning Use Cases and Growth Trends

Courtesy: https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/

https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/
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• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted) 

So what is a Deep Neural Network?

Courtesy: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/
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Graphical/Mathematical Intuitions for DNNs

Drawing of a Biological Neuron The Mathematical Model 

Courtesy: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/
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Key Phases of Deep Learning

Courtesy: https://devblogs.nvidia.com/

• Training is compute intensive
– Many passes over data

– Can take days to weeks

– Model adjustment is done

• Inference
– Single pass over the data

– Should take seconds

– No model adjustment

• Challenge: How to make “Training” faster?
– Need Parallel and Distributed Training…

https://devblogs.nvidia.com/
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• To actually train a network, please visit: http://playground.tensorflow.org

TensorFlow playground (Quick Demo)

http://playground.tensorflow.org/


ISC ‘21 13Network Based Computing Laboratory

• To try your own image, please visit: https://microsoft.github.io/onnxjs-demo/#/resnet50

Inference on trained ResNet50 (Quick Demo)

https://microsoft.github.io/onnxjs-demo/#/resnet50


ISC ‘21 14Network Based Computing Laboratory

• Introduction
– The Past, Present, and Future of Deep Learning

– What are Deep Neural Networks?

– Diverse Applications of Deep Learning 

– Deep Learning Frameworks

• Overview of Execution Environments 

• Parallel and Distributed DNN Training

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for Deep Learning

• Solutions and Case Studies

• Open Issues and Challenges  

• Hands-on Exercises

• Conclusion 

Outline



ISC ‘21 15Network Based Computing Laboratory

The Impact of Deep Learning on Application Areas

Courtesy: https://github.com/alexjc/neural-doodle

Courtesy: https://arxiv.org/pdf/1808.02334.pdfCourtesy: https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html

Courtesy: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8065136

https://github.com/alexjc/neural-doodle
https://arxiv.org/pdf/1808.02334.pdf
https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8065136


ISC ‘21 16Network Based Computing Laboratory

Google Translate

Courtesy: https://www.theverge.com/2015/1/14/7544919/google-translate-update-real-time-signs-conversations

https://www.theverge.com/2015/1/14/7544919/google-translate-update-real-time-signs-conversations
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Self Driving Cars

Courtesy: http://www.teslarati.com/teslas-full-self-driving-capability-arrive-3-months-definitely-6-months-says-musk/

http://www.teslarati.com/teslas-full-self-driving-capability-arrive-3-months-definitely-6-months-says-musk/
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• Applications 
– Prostate Cancer Detection

– Metastasis Detection in Breast Cancer

– Genetic Mutation Prediction

– Tumor Detection for Molecular Analysis

AI-Driven Digital Pathology

Courtesy: https://www.frontiersin.org/articles/10.3389/fmed.2019.00185/full
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• Computer Vision Applications (image classification, object detection ….)
– For many, the default answer is Convolutional Neural Networks (CNNs)

• Convolutional Neural Network
– Dense Layers (used a classifier)

– Convolution Layer (used as Feature Extraction layer)
• Convolution operation

• Activation function

• Pooling 

Most Well Known Application Area: Computer Vision 

Courtesy: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
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What is a Convolution Operation? Why do we need it?

Found Vertical Edge 

Different Filter will give a different feature

Courtesy: https://www.analyticsvidhya.com/blog/2018/12/guide-convolutional-neural-network-cnn/

https://www.analyticsvidhya.com/blog/2018/12/guide-convolutional-neural-network-cnn/
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Example of a Convolution Filter
-1 -2 -1

0 0 0

1 2 -1

-1 0 1

-2 0 2

-1 0 1

Sobel Filter
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• Deep Learning frameworks have emerged 

– hide most of the complicated mathematics

– focus on the design of neural networks

• We have saturated the peak potential of current-
generation architectures

– A single GPU or a many-core CPU is not enough!

• Two strategies to deal with current limitations 

– Parallel (multiple units in a single node) and/or 
Distributed (multiple nodes) training of DNNs

– Dedicated hardware architectures for DNNs are 
being developed

• DL Frameworks will need to be enhanced for both 
strategies

DL Frameworks, Hardware Architectures, and Distributed Training

Statement and its dataflow fragment. The 
data and computing vertexes with different 

colors reside on different processes. 

Courtesy: https://web.stanford.edu/~rezab/nips2014workshop/submits/minerva.pdf

https://web.stanford.edu/%7Erezab/nips2014workshop/submits/minerva.pdf
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• Many Deep Learning frameworks!!
– Google TensorFlow

– Facebook Torch/PyTorch

– Berkeley Caffe

– Microsoft CNTK

– Chainer/ChainerMN

– Intel Neon/Nervana Graph

• Open Neural Net eXchange (ONNX) Format

Deep Learning Frameworks 
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• The most widely used framework open-sourced by Google

• Replaced Google’s DistBelief framework

• Runs on almost all architectures (CPU, GPU, TPU, Mobile, etc.)

• Gone back and forth for APIs
– TF 1.0 – Lazy Execution and Sessions/Estimators

– TF 2.0 – Eager Execution and tf.keras 

• https://github.com/tensorflow/tensorflow

Google TensorFlow (Most Popular)

Courtesy: https://www.tensorflow.org/
Martin Abadi et al., “TensorFlow: A system for large-scale machine learning” https://ai.google/research/pubs/pub45381

https://github.com/tensorflow/tensorflow
https://www.tensorflow.org/
https://ai.google/research/pubs/pub45381
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• Torch was written in Lua
– Adoption wasn’t wide-spread

• PyTorch is a Python adaptation of Torch
– Gaining lot of attention

• Several contributors
– Biggest support by Facebook

• PyTorch and Caffe2 have been merged now to PyTorch

• Key selling point is ease of expression and “define-by-run” approach

Facebook Torch/PyTorch - Catching up fast!
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• MXNet 
– An Apache incubator project

– Strongly supported by Amazon now

• D2L.ai – A deep learning book with 

– Interactive jupyter notebooks, math formula,  and a forum

• MXNet -- can work as a Keras backend

• Key selling point: Rich and flexible ecosystem with Gluon
– GluonCV – Computer Vision

– GluonNLP – Natural Language Processing 

MXNet 

https://d2l.ai/
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• ONNX- Not a Deep Learning framework but an open format to 
exchange “trained” networks across different frameworks

• Currently supported
– Frameworks: Caffe2, Chainer, CNTK, MXNet, PyTorch

– Convertors: CoreML, TensorFlow

– Runtimes: NVIDIA

• https://onnx.ai

• https://github.com/onnx

Open Neural Network eXchange (ONNX) Format

https://github.com/onnx
https://github.com/onnx
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• Caffe – https://caffe.berkeleyvision.org

• Keras - https://keras.io

• Theano - http://deeplearning.net/software/theano/

• Blocks - https://blocks.readthedocs.io/en/latest/

• Intel BigDL - https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-
on-apache-spark

• The list keeps growing and the names keep getting longer and weirder ;-)

– Livermore Big Artificial Neural Network Toolkit (LBANN) -
https://github.com/LLNL/lbann

– Deep Scalable Sparse Tensor Network Engine (DSSTNE) -
https://github.com/amzn/amazon-dsstne

Many Other DL Frameworks…

https://caffe.berkeleyvision.org/
https://keras.io/
http://deeplearning.net/software/theano/
https://blocks.readthedocs.io/en/latest/
https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
https://github.com/LLNL/lbann
https://github.com/amzn/amazon-dsstne
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• AI Index report offers very 
detailed trends about AI and ML
– Interesting stats. about DL 

frameworks

• TheGradient* has a latest article 
on PyTorch winning over 
TensorFlow in CVPR, ICML, ICLR 
and other conferences

Statistics about DL Frameworks

Courtesy: https://aiindex.stanford.org

* https://thegradient.pub/state-of-ml-frameworks-2019-
pytorch-dominates-research-tensorflow-dominates-industry/

https://aiindex..org/
https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/
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• Early (2014) frameworks used a single fast GPU

• Today, parallel training on multiple GPUs is being supported by most frameworks

• Distributed (multiple nodes) training is still upcoming 

– A lot of fragmentation in the efforts (Horovod, MPI, NCCL, Gloo, gRPC, etc.)

• Hardware and Software Architectures for DL are also emerging 

– Habana, Nervana, Google TPUs, and many more…

– Smartphones - OK Google, Siri, Cortana, Alexa, etc.

– DrivePX – the computer that drives NVIDIA’s self-driving car

– Deeplearn.js (a DL framework in a web-browser)

– TensorFlow playground - http://playground.tensorflow.org/

Architectures and Execution Environments for DL frameworks?

http://playground.tensorflow.org/
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Conventional Execution on GPUs and CPUs

• We all have heard
– Our framework is faster than your framework!

• This needs to be understood in a holistic way

• Performance  
– Depends on the entire execution environment (the full architectural stack)

– Multiple helper libraries and systems have an impact 

• Isolated view of performance is not helpful for ML/DL workloads

• Architecture-specific (CPU/GPU/TPU) optimizations need to be 
developed and properly used

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training
on Modern Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.
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• BLAS Libraries – the heart of math 
operations

– Atlas/OpenBLAS

– NVIDIA cuBlas

– Intel Math Kernel Library (MKL)

• Most compute intensive layers are 
generally optimized for a specific 
hardware

– E.g. Convolution Layer, Pooling Layer, etc.

• DNN Libraries – the heart of Convolutions!
– NVIDIA cuDNN (already reached its 7th

iteration – cudnn-v7)

– Intel MKL-DNN – a promising development 
for CPU-based ML/DL training

DL Frameworks and Underlying Libraries

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training
on Modern Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.
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Where does the Performance come from?

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training on Modern 
Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.

• The full landscape: Forward and Backward Pass -- Faster Convolutions  Faster Training

• Performance of Intel KNL == NVIDIA P100 for AlexNet Training – Volta is in a different league!

• Most performance gains are based on improvements in layer conv2 and conv3 for AlexNet
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• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted) 

Understanding the Deep Neural Network Concepts

Courtesy: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/
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Deep Neural Network Concepts : Forward Pass

Input
Layer

Hidden
Layer

Hidden
Layer

Output
Layer
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Deep Neural Network Concepts : Forward Pass
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Deep Neural Network Concepts : Forward Pass

Input
Layer

Hidden
Layer

Hidden
Layer

Output
Layer

Forward Pass

W1

W2

W5

W4

W3

W6

X



ISC ‘21 41Network Based Computing Laboratory

Deep Neural Network Concepts : Forward Pass
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Deep Neural Network Concepts : Forward Pass
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Deep Neural Network Concepts : Backward Pass
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Deep Neural Network Concepts : Backward Pass
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Deep Neural Network Concepts : Backward Pass
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Deep Neural Network Concepts : DNN Training
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• Back-propagation involves 
complicated mathematics. 
– Luckily, most DL Frameworks give 

you a one line implementation --
model.backward()

Essential Concepts: Activation function and Back-propagation

• What are Activation functions? 
– RELU (a Max fn.) is the most common activation fn.

– Sigmoid, tanh, etc. are also used  

Courtesy: https://www.jeremyjordan.me/neural-networks-training/

https://www.jeremyjordan.me/neural-networks-training/
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Essential Concepts: Learning Rate (α)

Courtesy: https://www.jeremyjordan.me/nn-learning-rate/

https://www.jeremyjordan.me/nn-learning-rate/
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• Batched Gradient Descent

– Batch Size = N

• Stochastic Gradient Descent
– Batch Size = 1

• Mini-batch Gradient Descent
– Somewhere in the middle 

– Common:
• Batch Size = 64, 128, 256, etc.

• Finding the optimal batch 
size will yield the fastest 
learning.

Essential Concepts: Batch Size

Courtesy: https://www.jeremyjordan.me/gradient-descent/

N

Batch Size One full pass over N is called an epoch of training

https://www.jeremyjordan.me/gradient-descent/
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• Why do we need Parallel Training?

• Larger and Deeper models are being proposed
– AlexNet -> ResNet -> NASNet – AmoebaNet

– DNNs require a lot of memory and a lot of computation

– Larger models cannot fit a GPU’s memory

• Single GPU training cannot keep up with ever-larger models

• Community has moved to multi-GPU training

• Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)

• Multi-node (Distributed or Parallel) Training is necessary!!

The Need for Parallel and Distributed Training
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• Epochs per second (EPS)? 
– A variant of images/second

– Basically, what is the speed of 
training the model

• Accuracy per Epoch (APE)?
– E.g. 60% in one full pass over the 

dataset

• Async  Higher EPS but lower APE

• Sync  Higher APE but lower EPS

Synchronous vs. Asynchronous Training

Courtesy: http://engineering.skymind.io/distributed-deep-learning-
part-1-an-introduction-to-distributed-training-of-neural-networks

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
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• Large models  better accuracy

• More data  better accuracy

• Single-node Training; good for
– Small model and small dataset

• Distributed Training; good for:
– Large models and large datasets

Impact of Model Size and Dataset Size

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

model > data 

data > model 

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
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• Overfitting – model > data  so model is not learning but memorizing your data

• Underfitting – data > model  so model is not learning because it cannot capture the 
complexity of your data

Overfitting and Underfitting

Courtesy: https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
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Impact of Large Batch Size

Courtesy: https://research.fb.com/publications/imagenet1kin1h/
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No. of GPUs

GoogLeNet (ImageNet) on 128 GPUs

Caffe OSU-Caffe (1024) OSU-Caffe (2048)

Large Batch Size is bad for Accuracy But good for speed and scalability
A. A. Awan et al., S-Caffe: Co-designing MPI Runtimes and Caffe 
for Scalable Deep Learning on Modern GPU Clusters. PPoPP '17

https://research.fb.com/publications/imagenet1kin1h/
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• Some parallelization strategies..
– Data Parallelism or Model Parallelism

– Hybrid Parallelism

Parallelization Strategies

Model Parallelism

Data Parallelism
Hybrid (Model and Data) Parallelism

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
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Data Parallelism and MPI Collectives
• Step1: Data Propagation

– Distribute the Data among GPUs

• Step2: Forward Backward Pass
– Perform forward pass and 

calculate the prediction

– Calculate Error by comparing 
prediction with actual output 

– Perform backward pass and 
calculate gradients 

• Step3: Gradient Aggregation
– Call MPI_Allreduce to reduce the 

local gradients 

– Update parameters locally using 
global gradients
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• Strong scaling CIFAR10 Training with 
OSU-Caffe (1 –> 4 GPUs) – Batch Size 2K

• Large batch size is needed for 
scalability. 

• Adding more GPUs will degrade the 
scaling efficient

Benefits of Data Parallel Training: Using OSU-Caffe

OSU-Caffe is available from the HiDL project page
http://hidl.cse.ohio-state.edu

0
20
40
60
80

100
120
140
160

CIFAR-10

Ti
m

e 
(s

ec
on

ds
)

CIFAR-10 Training with OSU-Caffe

1-GPU 2-GPUs 4-GPUs

Run Command - (change $np from 1—4)

mpirun_rsh -np $np ./build/tools/caffe 
train -solver 
examples/cifar10/cifar10_quick_solver.prototxt
-scal strong

Output: I0123 21:49:24.289763 75582 caffe.cpp:351] Avg. Time Taken: 142.101

Output: I0123 21:54:03.449211 97694 caffe.cpp:351] Avg. Time Taken: 74.6679

Output: I0123 22:02:46.858219 20659 caffe.cpp:351] Avg. Time Taken: 39.8109

http://hidl.cse.ohio-state.edu/
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• Introduction

• Overview of Execution Environments 

• Parallel and Distributed DNN Training

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for Deep Learning

• Solutions and Case Studies

• Open Issues and Challenges  

• Hands-on Exercises

• Conclusion 

Outline
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High-Performance Architectures: Drivers of Modern HPC Clusters

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

• Accelerators (NVIDIA GPGPUs)

• Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.

Accelerators
high compute density, high 

performance/watt
>1 TFlop DP on a chip 

High Performance Interconnects -
InfiniBand

<1usec latency, 200Gbps Bandwidth>
Multi-/Many-core 

Processors
SSD, NVMe-SSD, NVRAM

K - ComputerSunway TaihuLightSummit Sierra
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• Hardware Architectures
– Interconnects

• InfiniBand, RoCE, Omni-Path, Slingshot, etc.

– Processors 
• GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU), FPGAs, etc.

• Communication Middleware
– Message Passing Interface (MPI)

• CUDA-Aware MPI

– NVIDIA NCCL

High-Performance Architectures for Distributed DL
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• High-Performance Computing (HPC) has adopted advanced interconnects and protocols 

– InfiniBand (IB)

– Omni-Path

– High Speed Ethernet 10/25/40/50/100/200 Gigabit Ethernet/iWARP

– RDMA over Converged Enhanced Ethernet (RoCE)

• Very Good Performance

– Low latency (few micro seconds)

– High Bandwidth (200 Gb/s with HDR InfiniBand)

– Low CPU overhead (5-10%)

• OpenFabrics software stack with IB, Omni-Path, iWARP and RoCE interfaces are driving HPC systems

• Many such systems in Top500 list

Overview of High Performance Interconnects
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InfiniBand Link Speed Standardization Roadmap

Courtesy: InfiniBand Trade Association

XDR = eXtreme Data Rate
NDR = Next Data Rate
HDR = High Data Rate
EDR = Enhanced Data Rate
FDR = Fourteen Data Rate
QDR = Quad Data Rate
DDR = Double Data Rate (not shown)
SDR = Single Data Rate (not shown)

mailto:panda@cse.ohio-state.edu
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Courtesy: https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

: https://www.nextplatform.com/2017/04/05/first-depth-look-googles-tpu-architecture/

Hardware for DNN Training and Inference: TPUs

• CISC style instruction set

• Uses systolic arrays as the heart of multiply unit

https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://www.nextplatform.com/2017/04/05/first-depth-look-googles-tpu-architecture/
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• Specifically designed for AI workloads – an 
Intelligence Processing Unit (IPU)
– Massively parallel

– Low-precision floating-point compute 

– Higher compute density

• Early benchmarks show 10-100x speedup 
over GPUs
– Presented at NIPS 2017

• HPC Wire: Microsoft Azure IPU instances 
https://www.hpcwire.com/2019/11/15/microsoft-azure-adds-
graphcores-ipu/

Hardware for DNN Training and Inference: IPUs

Courtesy: https://www.graphcore.ai/posts/preliminary-ipu-benchmarks-providing-previously-unseen-performance-for-a-range-of-machine-learning-applications

https://www.hpcwire.com/2019/11/15/microsoft-azure-adds-graphcores-ipu/
https://www.graphcore.ai/posts/preliminary-ipu-benchmarks-providing-previously-unseen-performance-for-a-range-of-machine-learning-applications
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• Habana Labs – Training Accelerator called Gaudi – (HotChips ‘19)

• Gaudi – AI processor with RoCE integrated

• Gaudi software – Enables high-level frameworks

• Intel has acquired Habana for $2 billion! 

Hardware for DNN Training: Habana Gaudi

Courtesy: https://habana.ai/wp-content/uploads/2019/06/Habana-Offers-Gaudi-for-AI-Training.pdf

https://habana.ai/wp-content/uploads/2019/06/Habana-Offers-Gaudi-for-AI-Training.pdf
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• Cerebras: First-Gen Wafer-Scale Engine (WSE) contains 400,000 Sparse Linear 
Algebra Compute (SLAC) Cores 

• Swarm Communication fabric in a 2D mesh with 100 Pb/s of bandwidth

• Teased World’s Largest Chip with 2.6 Trillion 7nm Transistors and 850000 
Cores (HotChips ‘20)

Hardware for DNN Training: Cerebras

Courtesy: https://www.cerebras.net/product/#chip, https://www.tomshardware.com/news/worlds-biggest-chip-cerebras-7nm-26-
trillion-transistors-850000-cores-wafer-scale-engine  

https://www.cerebras.net/product/#chip
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• Hardware Architectures
– Interconnects

• InfiniBand, RoCE, Omni-Path, etc.

– Processors
• GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU), FPGAs,  etc.

• Communication Middleware
– Message Passing Interface (MPI)

• CUDA-Aware MPI

– NVIDIA NCCL

High-Performance Architectures for Distributed DL
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Parallel Programming Models Overview

Shared Memory Memory Memory Memory Memory Memory Memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model 

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

OpenSHMEM, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems
– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• PGAS models and Hybrid MPI+PGAS models are gradually receiving importance

P1 P2 P3 P1 P2 P3

Logical shared memory

P1 P2 P3
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• Element-wise Sum data from all processes and sends to all processes

Allreduce Collective Communication Pattern

int MPI_Allreduce (const void *sendbuf, void * recvbuf, int count, MPI_Datatype datatype, 
MPI_Op operation, MPI_Comm comm)

Input-only Parameters

Parameter Description

sendbuf Starting address of send buffer

recvbuf Starting address of recv buffer

type Data type of buffer elements

count Number of elements in the buffers

operation Reduction operation to be performed (e.g. sum)

comm Communicator handle

Input/Output Parameters

Parameter Description

recvbuf Starting address of receive buffer

T1 T2 T3 T4

Sendbuf (Before)

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

T1 T2 T3 T4

Recvbuf (After)

4
8

12
16

4
8
12
16

4
8

12
16

4
8

12
16
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library 

• Support for multiple interconnects
– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), and AWS EFA

• Support for multiple platforms
– x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02

• Supports the latest MPI-3.1 standard

• http://mvapich.cse.ohio-state.edu

• Additional optimized versions for different systems/environments:
– MVAPICH2-X (Advanced MPI + PGAS), since 2011

– MVAPICH2-GDR with support for NVIDIA GPGPUs, since 2014

– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

– MVAPICH2-Virt with virtualization support, since 2015

– MVAPICH2-EA with support for Energy-Awareness, since 2015

– MVAPICH2-Azure for Azure HPC IB instances, since 2019

– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:
– OSU MPI Micro-Benchmarks (OMB), since 2003

– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,175 organizations in 89 countries

• More than 1.39 Million downloads from the OSU site 
directly

• Empowering many TOP500 clusters (Nov ‘20 ranking)
– 4th , 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 9th, 448, 448 cores (Frontera) at TACC

– 14th, 391,680 cores (ABCI) in Japan

– 21st, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and Linux 
Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 9th ranked TACC Frontera system

• Empowering Top500 systems for more than 16 years

http://mvapich.cse.ohio-state.edu/
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At Sender:

At Receiver:
MPI_Recv(r_devbuf, size, …);

inside
MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GDR 
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• NVIDIA Collective Communication Library (NCCL)

• Main Motivation: Deep Learning workloads

• NCCL1– efficient dense-GPU communication within the node

• NCCL2– multiple DGX systems connected to each other with InfiniBand systems

NCCL Communication Library

Courtesy: https://developer.nvidia.com/nccl

https://developer.nvidia.com/nccl
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• Introduction

• Overview of Execution Environments 

• Parallel and Distributed DNN Training

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for Deep Learning

• Solutions and Case Studies

• Open Issues and Challenges 

• Hands-on Exercises

• Conclusion 

Outline
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How to efficiently scale-out a 

Deep Learning (DL) framework and take 
advantage of heterogeneous 

High Performance Computing (HPC) resources?

Broad Challenge: Exploiting HPC for Deep Learning
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1. What are the fundamental 
issues in designing DL 
frameworks?
– Memory Requirements

– Computation Requirements

– Communication Overhead

2. Why do we need to support 
distributed training?
– To overcome the limits of 

single-node training

– To better utilize hundreds of 
existing HPC Clusters

Research Challenges to Exploit HPC Technologies

InfiniBand GPUCPU

CNTK

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe Caffe2 TensorFlow MXNet

Communication Runtimes to support 
Distributed Training

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

1

2
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3. What are the new design challenges 
brought forward by DL frameworks for 
Communication runtimes?

– Large Message Collective
Communication and Reductions

– GPU Buffers (CUDA-Awareness)

4. Can a Co-design approach help in achieving 
Scale-up and Scale-out efficiently?

– Co-Design the support at Runtime 
level and Exploit it at the DL 
Framework level

– What performance benefits can be 
observed? 

– What needs to be fixed at the 
communication runtime layer?

5. 

Research Challenges to Exploit HPC Technologies (Cont’d)

CUDA-
Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-Point
Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

3

4 Co-Design 
Opportunities
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• Introduction

• Overview of Execution Environments 

• Parallel and Distributed DNN Training

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for Deep Learning

• Solutions and Case Studies

• Open Issues and Challenges  

• Hands-on Exercises

• Conclusion 

Outline
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• Data Parallelism
– Baidu-allreduce

– NVIDIA NCCL/NCCL2

– Co-design MPI runtimes and DL 
Frameworks

– Distributed Training for 
TensorFlow

• Model and Hybrid Parallelism
– GPipe

– FlexFlow

– HyPar-Flow

– GEMS

– SUPER

Solutions and Case Studies: Exploiting HPC for DL

CUDA-
Awareness

InfiniBand GPUCPU

Large-message 
Collectives

(Baidu-allreduce)

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities



ISC ‘21 80Network Based Computing Laboratory

Baidu’s Ring-Allreduce in TensorFlow

Courtesy: http://on-demand.gputechconf.com/gtc/2017/presentation/s7543-andrew-gibiansky-effectively-scakukbg-deep-learning-frameworks.pdf

http://on-demand.gputechconf.com/gtc/2017/presentation/s7543-andrew-gibiansky-effectively-scakukbg-deep-learning-frameworks.pdf
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• 16 GPUs (4 nodes) MVAPICH2-GDR vs. Baidu-Allreduce and OpenMPI 3.0

MVAPICH2-GDR: Allreduce Comparison with Baidu and OpenMPI

*Available since MVAPICH2-GDR 2.3a

~30X better

MV2 is ~2X better 
than Baidu

~10X better OpenMPI is ~5X slower 
than Baidu

~4X better
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• Data Parallelism
– Baidu-allreduce

– NVIDIA NCCL/NCCL2

– Co-design MPI runtimes and DL 
Frameworks

– Distributed Training for 
TensorFlow

• Model and Hybrid Parallelism
– GPipe

– FlexFlow

– HyPar-Flow

– GEMS

– SUPER

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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NCCL2: Multi-node GPU Collectives

Courtesy: http://on-demand.gputechconf.com/gtc/2017/presentation/s7155-jeaugey-nccl.pdf

http://on-demand.gputechconf.com/gtc/2017/presentation/s7155-jeaugey-nccl.pdf
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MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (DGX-2)
• Optimized designs in MVAPICH2-GDR offer better/comparable performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)
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Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 10.1
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C.-H. Chu, P. Kousha, A. Awan, K. S. Khorassani, H. Subramoni and D. K. Panda, "NV-Group: Link-Efficient Reductions for Distributed Deep Learning on Modern Dense GPU 
Systems, " ICS-2020, June-July 2020.
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MVAPICH2-GDR: MPI_Allreduce at Scale (ORNL Summit)
• Optimized designs in MVAPICH2-GDR offer better performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) up to 1,536 GPUs
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C.-H. Chu, P. Kousha, A. Awan, K. S. Khorassani, H. Subramoni and D. K. Panda, "NV-Group: Link-Efficient Reductions for Distributed Deep Learning on Modern Dense GPU 
Systems, " ICS-2020, June-July 2020.
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• Data Parallelism
– Baidu-allreduce

– NVIDIA NCCL/NCCL2

– Co-design MPI runtimes and 
DL Frameworks

– Distributed Training for 
TensorFlow

• Model and Hybrid Parallelism
– GPipe

– FlexFlow

– HyPar-Flow

– GEMS

– SUPER

Solutions and Case Studies: Exploiting HPC for DL

CUDA-
Awareness

InfiniBand GPUCPU

Hierarchical Reduce (HR)
Large-message Collectives

NCCL-Bcast/MPI_Bcast

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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• To address the limitations of Caffe and existing MPI runtimes, we 
propose the OSU-Caffe (S-Caffe) framework

• At the application (DL framework) level

– Develop a fine-grain workflow – i.e. layer-wise communication instead 
of communicating the entire model

• At the runtime (MPI) level

– Develop support to perform reduction of very-large GPU buffers

– Perform reduction using GPU kernels 

S-Caffe: Proposed Co-Design Overview

OSU-Caffe is available from the HiDL project page
(http://hidl.cse.ohio-state.edu)

http://hidl.cse.ohio-state.edu/
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• Caffe : A flexible and layered Deep Learning 
framework.

• Benefits and Weaknesses
– Multi-GPU Training within a single node

– Performance degradation for GPUs across different sockets 

– Limited Scale-out

• OSU-Caffe: MPI-based Parallel Training 
– Enable Scale-up (within a node) and Scale-out (across multi-

GPU nodes)

– Scale-out on 64 GPUs for training CIFAR-10 network on CIFAR-
10 dataset

– Scale-out on 128 GPUs for training GoogLeNet network on 
ImageNet dataset

OSU-Caffe: Scalable Deep Learning
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Invalid use case

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU 
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)
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• Data Parallelism
– Baidu-allreduce

– NVIDIA NCCL/NCCL2

– Co-design MPI runtimes and DL 
Frameworks

– Distributed Training for 
TensorFlow

• Model and Hybrid Parallelism
– GPipe

– FlexFlow

– HyPar-Flow

– GEMS

– SUPER

Solutions and Case Studies: Exploiting HPC for DL
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• Need to understand several options currently available

• gRPC (official support)
– Open-source – can be enhanced by others

– Accelerated gRPC (add RDMA to gRPC)

• gRPC+X
– Use gRPC for bootstrap and rendezvous

– Actual communication is in “X”

– XMPI, Verbs, GPUDirect RDMA (GDR), etc.

• No-gRPC
– Baidu – the first one to use MPI Collectives for TF

– Horovod – Use NCCL, or MPI, or any other future library (e.g. IBM DDL support recently added) 

Data Parallel Training with TensorFlow (TF)

A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, “Scalable Distributed DNN Training using TensorFlow and 
CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation”, CCGrid ‘19. https://arxiv.org/abs/1810.11112

https://arxiv.org/abs/1810.11112
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MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

MVAPICH2 or MVAPICH2-X 
for CPU Training

MVAPICH2-GDR for 
GPU Training

Horovod

TensorFlow PyTorch MXNet

ML/DL Applications

MVAPICH2 or MVAPICH2-X 
for CPU Training

MVAPICH2-GDR for 
GPU Training

Torch.distributed

PyTorch

ML/DL Applications

DeepSpeed

More details available from: http://hidl.cse.ohio-state.edu

http://hidl.cse.ohio-state.edu/


ISC ‘21 92Network Based Computing Laboratory

Scalable TensorFlow using Horovod and MVAPICH2-GDR
• ResNet-50 Training using TensorFlow benchmark on 1 DGX-2 node (16 Volta GPUs)
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Actual throughput

Ideal throughput at scale
× 100%

C.-H. Chu, P. Kousha, A. Awan, K. S. Khorassani, H. Subramoni and D. K. Panda, "NV-Group: Link-Efficient Reductions for Distributed Deep Learning on Modern Dense GPU 
Systems, " ICS-2020. 
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Distributed TensorFlow on ORNL Summit (1,536 GPUs)
• ResNet-50 Training using 

TensorFlow benchmark on 
SUMMIT -- 1536 Volta 
GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3 seconds

• Total Time (90 epochs)        
= 3 x 90 = 270 seconds = 4.5 
minutes!
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Platform: The Summit Supercomputer (#2 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1

*We observed issues for NCCL2 beyond 384 GPUs 

MVAPICH2-GDR reaching ~0.42 million 
images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images
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• ResNet-50 training using PyTorch 
+ Horovod on Summit
– Synthetic ImageNet dataset
– Up to 256 nodes, 1536 GPUs

• MVAPICH2-GDR can outperform 
NCCL2 
– Up to 30% higher throughput

• CUDA 10.1            cuDNN 7.6.5                 
PyTorch v1.5.0     Horovod v0.19.1

Scaling PyTorch on ORNL Summit using MVAPICH2-GDR
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C.-H. Chu, P. Kousha, A. Awan, K. S. Khorassani, H. Subramoni and D. K. Panda, 
"NV-Group: Link-Efficient Reductions for Distributed Deep Learning on Modern 
Dense GPU Systems, " ICS-2020, June-July 2020.

Platform: The Summit Supercomputer (#2 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1



ISC ‘21 95Network Based Computing Laboratory

Distributed 
Framework

Torch.distributed Horovod DeepSpeed

Images/sec on 
256 GPUs

61,794 72,120 74,063 84,659 80,217 88,873

Communication 
Backend

NCCL MVAPICH2-GDR NCCL MVAPICH2-GDR NCCL MVAPICH2-GDR

PyTorch at Scale: Training ResNet-50 on 256 V100 GPUs

• Training performance for 256 V100 GPUs on LLNL Lassen

– ~10,000 Images/sec faster than NCCL training!
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Distributed TensorFlow on TACC Frontera (2,048 CPU nodes)
• Scaled TensorFlow to 2,048 nodes on 

Frontera using MVAPICH2 and IntelMPI

• MVAPICH2 and IntelMPI give similar 
performance for DNN training

• Report a peak of 260,000 images/sec on 
2,048 nodes

• On 2,048 nodes, ResNet-50 can be trained 
in 7 minutes! 

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep 
Learning on Frontera”, DLS ’19 (SC ’19 Workshop). 
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• Data Parallelism
– Baidu-allreduce

– NVIDIA NCCL/NCCL2

– Co-design MPI runtimes and DL 
Frameworks

– Distributed Training for 
TensorFlow

• Model and Hybrid Parallelism
– GPipe

– FlexFlow

– HyPar-Flow

– GEMS

– SUPER

Solutions and Case Studies: Exploiting HPC for DL

CUDA-
Awareness

InfiniBand GPUCPU

Hierarchical Reduce (HR)
Large-message Collectives

NCCL-Bcast/MPI_Bcast

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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• GPipe allows training of very 
large models

• Split the model across layers

• Trained AmoebaNet with 600 
million parameters

• AmoebaNet cannot be trained 
on a single GPU or TPU

• 2.7x speedup on 8 GPUs
– Why?

GPipe: Pipeline Parallelism

GPipe: https://arxiv.org/pdf/1811.06965.pdf

https://arxiv.org/pdf/1811.06965.pdf
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• Data Parallelism
– Baidu-allreduce

– NVIDIA NCCL/NCCL2

– Co-design MPI runtimes and DL 
Frameworks

– Distributed Training for 
TensorFlow

• Model and Hybrid Parallelism
– GPipe

– FlexFlow

– HyPar-Flow

– GEMS

– SUPER

Solutions and Case Studies: Exploiting HPC for DL

CUDA-
Awareness

InfiniBand GPUCPU

Hierarchical Reduce (HR)
Large-message Collectives

NCCL-Bcast/MPI_Bcast

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe Caffe2 FlexFlow MXNet

Communication Runtimes (MPI/Legion/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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• FlexFlow: identify more dimensions of 
parallelism in DNNs

• Develop strategies and graphs for parallel 
training 

• Search algorithms for finding the best 
parallelization strategy

• Uses Legion tasks for distributed training 
on GPUs

FlexFlow: Beyond Data and Model Parallelism

Courtesy: https://arxiv.org/pdf/1807.05358.pdf

https://arxiv.org/pdf/1807.05358.pdf
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• FlexFlow: identify more 
dimensions of parallelism in DNNs

• Develop strategies and graphs for 
parallel training 

• Search algorithms for finding the 
best parallelization strategy

• Uses Legion tasks for distributed 
training on GPUs

FlexFlow: Performance Benefits

Courtesy: https://arxiv.org/pdf/1807.05358.pdf

https://arxiv.org/pdf/1807.05358.pdf
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• Data Parallelism
– Baidu-allreduce

– NVIDIA NCCL/NCCL2

– Co-design MPI runtimes and DL 
Frameworks

– Distributed Training for 
TensorFlow

• Model and Hybrid Parallelism
– GPipe

– FlexFlow

– HyPar-Flow

– GEMS

– SUPER

Solutions and Case Studies: Exploiting HPC for DL

CUDA-
Awareness

InfiniBand GPUCPU

Hierarchical Reduce (HR)
Large-message Collectives

NCCL-Bcast/MPI_Bcast

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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• Why Hybrid parallelism?

– Data Parallel training has 
limits! 

• We propose HyPar-Flow

– An easy to use Hybrid 
parallel training framework

• Hybrid = Data + Model

– Supports Keras models and 
exploits TF 2.0 Eager 
Execution

– Exploits MPI for Point-to-
point and Collectives 

HyPar-Flow: Hybrid Parallelism for TensorFlow

Benchmarking large-models lead to better insights and ability to develop new approaches!

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, “HyPar-Flow: Exploiting MPI and Keras for Hybrid 
Parallel Training of TensorFlow models”, ISC ’20, https://arxiv.org/pdf/1911.05146.pdf

https://arxiv.org/pdf/1911.05146.pdf
https://arxiv.org/pdf/1911.05146.pdf


ISC ‘21 104Network Based Computing Laboratory

• HyPar-Flow is practical (easy-to-use) and high-performance (uses MPI)
– Based on Keras models and exploits TF 2.0 Eager Execution

– Leverages MPI Pt-to-pt. and Collectives for communication

Model/Hybrid Parallelism and MPI Collectives

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, “HyPar-Flow: 
Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models”, ISC ’20, 
https://arxiv.org/pdf/1911.05146.pdf

https://arxiv.org/pdf/1911.05146.pdf
https://arxiv.org/pdf/1911.05146.pdf
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• HyPar-Flow*: Hybrid Parallel 
training of TensorFlow models

• Exploit MPI for communication 
and Keras for model 
definitions

• Hybrid combination of 
Model and Data parallelism

• Speedup over one node: 110x 
on 128 nodes

• EBS = Effective batch size

Benefits of Model/Hybrid Parallel Training: Using HyPar-Flow

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, “HyPar-Flow: Exploiting MPI and Keras for Hybrid 
Parallel Training of TensorFlow models”, ISC ‘20, https://arxiv.org/pdf/1911.05146.pdf

https://arxiv.org/pdf/1911.05146.pdf
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• ResNet-1001 with variable batch 
size

• Approach: 
– 48 model-partitions for 56 cores

– 512 model-replicas for 512 nodes

– Total cores: 56 x 512 = 28,672

• Speedup
– 253X on 256 nodes

– 481X on 512 nodes

• Scaling Efficiency
– 98% up to 256 nodes

– 93.9% for 512 nodes 

HyPar-Flow at Scale (512 nodes on TACC Frontera)

481x speedup on 512 Intel Xeon Cascade Lake nodes (TACC Frontera)

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, “HyPar-Flow: Exploiting MPI and Keras for Hybrid 
Parallel Training of TensorFlow models”, ISC ‘20, https://arxiv.org/pdf/1911.05146.pdf

https://arxiv.org/pdf/1911.05146.pdf
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• Data Parallelism
– Baidu-allreduce

– NVIDIA NCCL/NCCL2

– Co-design MPI runtimes and DL 
Frameworks

– Distributed Training for 
TensorFlow

• Model and Hybrid Parallelism
– GPipe

– FlexFlow

– HyPar-Flow

– GEMS

– SUPER

Solutions and Case Studies: Exploiting HPC for DL

CUDA-
Awareness

InfiniBand GPUCPU

Hierarchical Reduce (HR)
Large-message Collectives

NCCL-Bcast/MPI_Bcast

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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Why do we need Memory aware 
designs?

– Data and Model Parallel 
training has limitation!

– Maximum Batch Size 
depends on the memory.

– Basic Model Parallelism 
suffers from 
underutilization of memory 
and compute 

GEMS: GPU Enabled Memory Aware Model Parallelism Systems 

Memory requirement increases with the increase in image size!

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. Panda, R. Machiraju, A. Parwani, “GEMS: GPU Enabled Memory Aware Model Parallelism System for 
Distributed DNN”,  SC ‘20
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• We propose memory aware designs 
to accelerate the training of DNN on 
large image sizes.

• Approaches: 
– Memory Aware Synchronized Training 

(MAST)

– Memory Aware Synchronized Training 
with Enhanced Replications (MASTER)

• Setup
– ResNet-1k on 512 X 512 images

– 128 Replications on 1024 GPUs 

• Scaling Efficiency
– 97.32% on 1024 nodes 

GEMS at Scale (1,024 V100 GPUs on LLNL Lassen)

97.32% scaling efficiency on 1024 V100 GPUs (LLNL Lassen) 
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A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. Panda, R.
Machiraju, A. Parwani, “GEMS: GPU Enabled Memory Aware Model Parallelism System
for Distributed DNN”, SC ‘20
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• Pathology whole slide image (WSI) 
– Each WSI = 100,000 x 100,000 pixels

– Can not fit in a single GPU memory

– Tiles are extracted to make training possible

• Two main problems with tiles
– Restricted tile size because of GPU memory limitation

– Smaller tiles loose structural information

• Can we use Model Parallelism to train on larger tiles to get 
better accuracy and diagnosis?

• Reduced training time significantly
– 32 hours (1 node, 1 GPU) -> 7.25 hours (1 node, 4 GPUs) -> 

27 mins (32 nodes, 128 GPUs)

Exploiting Model Parallelism in AI-Driven Digital Pathology

Courtesy: https://blog.kitware.com/digital-slide-
archive-large-image-and-histomicstk-open-source-
informatics-tools-for-management-visualization-and-
analysis-of-digital-histopathology-data/A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. Panda, R. Machiraju, A. Parwani, “GEMS:

GPU Enabled Memory Aware Model Parallelism System for Distributed DNN”, SC ‘20

https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
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• Data Parallelism
– Baidu-allreduce

– NVIDIA NCCL/NCCL2

– Co-design MPI runtimes and DL 
Frameworks

– Distributed Training for 
TensorFlow

• Model and Hybrid Parallelism
– GPipe

– FlexFlow

– HyPar-Flow

– GEMS

– SUPER

Solutions and Case Studies: Exploiting HPC for DL

CUDA-
Awareness

InfiniBand GPUCPU

Hierarchical Reduce (HR)
Large-message Collectives

NCCL-Bcast/MPI_Bcast

CNTK

Collective
Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe LBANN TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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Sub-Graph Parallelism 

– Exploits inherent parallelism in 
modern DNN architectures

– Improves the Performance of 
multi-branch DNN architectures 

– Can be used to accelerate the 
training of state-of-the-art 
Transformer models

– Provides better than Data-
Parallelism for in-core models

SUPER: SUb-Graph Parallelism for TransformERs

A. Jain, T. moon, T. Benson, H. Subramoni, S. Jacobs, D. Panda, B. Essen, “SUPER: SUb-Graph Parallelism for TransformERs”,  IPDPS ’21

Simple example of a multi-branch DNN architecture

4-way Sub-Graph Parallelism combined with Data-Parallelism (D&SP)
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• We propose sub-graph parallelism 
integrated with data parallelism to 
accelerate the training of 
Transformers.

• Approach
– Data and Sub-Graph Parallelism (D&SP)

• #-way D&SP (#: number of sub-graphs)

• Setup
– T5-Large-Mod on WMT Dataset

– 1024 NVIDIA V100 GPUs 

• Speedup
– Up to 3.05X over Data Parallelism (DP) 

Accelerating Transformers using SUPER

Up to 3.05X speedup over Data Parallel designs (LLNL Lassen) 
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• Introduction

• Overview of Execution Environments 

• Parallel and Distributed DNN Training

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for Deep Learning

• Solutions and Case Studies

• Open Issues and Challenges

• Hands-on Exercises

• Conclusion 

Outline
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• Convergence of DL and HPC

• Scalability and Large batch-size training?

• DL Benchmarks and Thoughts on Standardization

• Open Exchange and Making AI accessible?

Open Issues and Challenges  
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• Is Deep Learning an HPC Problem?
– Distributed DNN Training is definitely an HPC problem

– Inference – not yet an HPC problem

• Why HPC can help?
– Decades of research for communication models and performance optimizations

– MPI, PGAS, and other upcoming programming models and communication runtimes can 
help for “data-parallel” training

• Some of the needs for DNN training are an exact match
– Compute intensive problem

• Some needs are new for distributed/parallel communication runtimes
– Large Message Communication

– CUDA-Aware Communication

Convergence of DL and HPC
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• Large batch-size helps improve the scalability
– Lesser communication and more compute before synchronization

– Limits to large batch-size
• DL community is actively exploring this area

• HPC community can also investigate overlap and latency-hiding techniques

• Is there a limit to DNN size?
– Noam Shazeer’s Outrageously Large Model (137 Billion Parameters) 

– https://arxiv.org/pdf/1701.06538.pdf

• Out-of-core Training for GPUs?
– NVIDIA’s vDNN - https://arxiv.org/pdf/1602.08124.pdf

– Prune the network or selectively allocate/de-allocate memory on GPUs

– OC-DNN and OC-Caffe

Scalability and Large batch-size training?

https://arxiv.org/pdf/1701.06538.pdf
https://arxiv.org/pdf/1602.08124.pdf
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Scalability and Large (Out-of-core) Models?
• Large DNNs cannot be trained on GPUs due to memory limitation!

– ResNet-50 for Image Recognition but current frameworks can 
only go up to a small batch size of 45

– Next generation models like Neural Machine Translation (NMT) 
are ridiculously large, consists of billions of parameters, and 
require even more memory

– Can we design Out-of-core DNN training support using new 
software features in CUDA 8/9 and hardware mechanisms in 
Pascal/Volta GPUs? 

• General intuition is that managed allocations “will be” slow!

– The proposed framework called OC-Caffe (Out-of-Core Caffe)
shows the potential of managed memory designs that can 
provide performance with negligible/no overhead.

• OC-Caffe-Opt: up to 80% better than Intel-optimized CPU Caffe for 
ResNet-50 training on the Volta V100 GPU with CUDA9 and CUDNN7

A. A. Awan, C.-H. Chu, H. Subramoni, X. Lu, and D. K. Panda, OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training, HiPC ’18
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• Can we have a standardized interface?
– Are we there yet?

– Deep Learning Interface (DLI)? Inspired by Message Passing Interface (MPI)
• What can be a good starting point?

• Will it come from the HPC community or the DL community?

• Can there be a collaboration across communities?

• What about standard benchmarks? Is there a need?
– State-of-the-art

• HKBU benchmarks - http://dlbench.comp.hkbu.edu.hk

• Soumith Chintala’s benchmarks - https://github.com/soumith/convnet-benchmarks

• DAWN Bench – https://dawn.cs.stanford.edu/benchmark/

• MLPerf – https://www.mlperf.org -- Latest and Widely Promoted now!

DL Benchmarks and Thoughts on Standardization

http://dlbench.comp.hkbu.edu.hk/
https://github.com/soumith/convnet-benchmarks
https://dawn.cs.stanford.edu/benchmark/
https://www.mlperf.org/


ISC ‘21 120Network Based Computing Laboratory

• OpenAI – a company focused towards making AI accessible and open
– Backed up by several industry partners and individuals

• Amazon, Microsoft, Infosys, Elon Musk, Peter Thiel, and others..

– Latest News: Microsoft will invest $1 Billion in OpenAI R&D
– https://www.hpcwire.com/2019/07/22/microsoft-investing-1b-in-openai-artificial-general-intelligence-rd/

• ONNX format 
– An open format to exchange trained models

– Cross-framework compatibility

– Created by Facebook and Microsoft 

– TensorFlow and CoreML (Apple) are also supported (Convertor only)

Open Exchange and Making AI accessible?

https://www.hpcwire.com/2019/07/22/microsoft-investing-1b-in-openai-artificial-general-intelligence-rd/
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• Introduction

• Overview of Execution Environments 

• Parallel and Distributed DNN Training

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for Deep Learning

• Solutions and Case Studies

• Open Issues and Challenges

• Hands-on Exercises

• Conclusion 

Outline



ISC ‘21 122Network Based Computing Laboratory

• You will run the experiments on the OSU RI2 cluster

• Please use the account name and password from http://go.osu.edu/dltutorial

• E.g. ssh ri2tut01@ri2.cse.ohio-state.edu and tutorial01 as password

• Once on the shell, go to /opt/tutorials/dl-tutorial-21/labs (copy/paste the 
following line)

cd /opt/tutorials/dl-tutorial-21/labs

There are two folders for exercises (lab 1 and lab2) and one for homework (hw)

• Take a look at the README.md file for all scripts 

– copy/paste the run commands from README.md and not the slide deck

Getting Set-up for the Hands-on Exercises

http://go.osu.edu/dltutorial
mailto:ri2tut01@ri2.cse.ohio-state.edu
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• Objectives
– How to train a PyTorch model on a single NVIDIA GPU?

– How to perform distributed training of a PyTorch model on multiple GPUs using InfiniBand 
and NVIDIA GPUs?

• Tasks
– Run PyTorch on a Single GPU

– Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2)

– Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2-GDR)

Lab1 - Overview
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• Examples to run data-parallel training with PyTorch using Horovod

• Available from: https://github.com/horovod/horovod/tree/master/examples

• To run ResNet50 with synthetic data with a single GPU, run

python pytorch_synthetic_benchmark.py \

--batch_size=32 \

----num-iters=10 \

Distributed Training with PyTorch using Horovod 

https://github.com/horovod/horovod/tree/master/examples
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Lab1-Task1: Run PyTorch on a single GPU

$ cd /opt/tutorials/dl-tutorial-21/labs/lab1
$ srun -N 1 --reservation=dltutorial run_pytorch_bench_single.sh

+ /opt/tutorials/dl-tutorial-21/miniconda3/envs/pytorch_mv2/bin/python /opt/tutorials/dl-tutorial-
21/horovod/examples/pytorch/pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.
.
Model: resnet50
Batch size: 64
Number of GPUs: 1
Running warmup...
Running benchmark...
Iter #0: 333.9 img/sec per GPU
Iter #1: 334.2 img/sec per GPU
Iter #2: 333.9 img/sec per GPU
Iter #3: 333.8 img/sec per GPU
Iter #4: 333.9 img/sec per GPU
Img/sec per GPU: 334.0 +-0.2
-----------------------------------------
Total img/sec on 1 GPU(s): 334.0 +-0.2
-----------------------------------------

V100
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Lab1-Task2: Run PyTorch on two nodes with 1 GPU/node 
(using MVAPICH2)
$ srun -N 2 --reservation=dltutorial run_pytorch_bench_multi_mv2.sh

+ /opt/tutorials/dl-tutorial-21/mv2/bin/mpirun_rsh -np 2 gpu11 gpu12 MV2_USE_CUDA=1 
MV2_CPU_BINDING_POLICY=hybrid MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0 
/opt/tutorials/dl-tutorial-21/miniconda3/envs/pytorch_mv2/bin/python /opt/tutorials/dl-tutorial-
21/horovod/examples/pytorch/pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.
.
Model: resnet50
Batch size: 64
Number of GPUs: 2
Running warmup...
Running benchmark...
Iter #0: 247.4 img/sec per GPU
Iter #1: 254.6 img/sec per GPU
Iter #2: 255.8 img/sec per GPU
Iter #3: 261.9 img/sec per GPU
Iter #4: 261.0 img/sec per GPU
Img/sec per GPU: 256.1 +-10.3
-------------------------------------------
Total img/sec on 2 GPU(s): 512.3 +-20.6
--------------------------------------------

V100

~1.53X on 
2 GPUs
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Lab1-Task3: Run PyTorch on two nodes with 1 GPU/node 
(using MVAPICH2-GDR)
$ srun -N 2 --reservation=dltutorial run_pytorch_bench_multi_mv2gdr.sh

+ /opt/tutorials/dl-tutorial-21/mv2-gdr/bin/mpirun_rsh -np 2 gpu11 gpu12 MV2_USE_CUDA=1 MV2_CPU_BINDING_POLICY=hybrid 
MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0 
MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so LD_PRELOAD=/opt/tutorials/dl-tutorial-21/mv2-
gdr/lib/libmpi.so /opt/tutorials/dl-tutorial-21/miniconda3/envs/pytorch_gdr/bin/python /opt/tutorials/dl-tutorial-
21/horovod/examples/pytorch/pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.
.
Model: resnet50
Batch size: 64
Number of GPUs: 2
Running warmup...
Running benchmark...
Iter #0: 317.0 img/sec per GPU
Iter #1: 314.9 img/sec per GPU
Iter #2: 315.4 img/sec per GPU
Iter #3: 318.0 img/sec per GPU
Iter #4: 316.7 img/sec per GPU
Img/sec per GPU: 316.4 +-2.2
-----------------------------------------
Total img/sec on 2 GPU(s): 632.8 +-4.3
-----------------------------------------

V100

~1.89X on 
2 GPUs
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• Objectives
– How to train a TensorFlow model on a single NVIDIA GPU?

– How to perform distributed training of a TensorFlow model on multiple GPUs using 
InfiniBand and NVIDIA GPUs?

• Tasks
– Run TensorFlow on a Single GPU

– Run TensorFlow on two nodes with 1 GPU/node (using MVAPICH2-GDR)

Lab2 - Overview
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• Examples to run data-parallel training with TensorFlow using Horovod

• Available from: https://github.com/horovod/horovod/tree/master/examples

• To run ResNet50 with synthetic data with a single GPU, run

python tensorflow2_synthetic_benchmark.py\

--batch_size=32 \

----num-iters=10 \

Distributed Training with TensorFlow using Horovod 

https://github.com/horovod/horovod/tree/master/examples
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Lab2-Task1: Run TensorFlow on a Single GPU

$ cd /opt/tutorials/dl-tutorial-21/labs/lab2
$ srun -N 1 --reservation=dltutorial run_tf_bench_single.sh

+ /opt/tutorials/dl-tutorial-21/miniconda3/envs/tf_mv2_gdr/bin/python       /opt/tutorials/dl-tutorial-
21/horovod/examples/tensorflow2//tensorflow2_synthetic_benchmark.py –batch-size 64
.
Model: ResNet50
Batch size: 64
Number of GPUs: 1
Running warmup...
Running benchmark...
Iter #0: 339.6 img/sec per GPU
Iter #1: 337.9 img/sec per GPU
Iter #2: 337.8 img/sec per GPU
Iter #3: 337.8 img/sec per GPU
Iter #4: 337.8 img/sec per GPU
Img/sec per GPU: 338.2 +-1.4
-----------------------------------------------
Total img/sec on 1 GPU(s): 338.2 +-1.4
-----------------------------------------------
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Lab2-Task2: Run TensorFlow on two nodes with 1 GPU/node 
(using MVAPICH2-GDR)
$ srun -N 2 --reservation=dltutorial run_tf_bench_multi_mv2gdr.sh

+ /opt/tutorials/dl-tutorial-21/mv2-gdr/bin/mpirun_rsh -np 2 gpu11 gpu12 MV2_USE_CUDA=1 MV2_SUPPORT_DL=1 
MV2_CPU_BINDING_POLICY=hybrid MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0 
/opt/tutorials/dl-tutorial-21/miniconda3/envs/tf_mv2_gdr/bin/python /opt/tutorials/dl-tutorial-
21/horovod/examples/tensorflow2/tensorflow2_synthetic_benchmark.py --batch-size 64 --num-iters=5.
.
Model: ResNet50
Batch size: 64
Number of GPUs: 2
Running warmup...
Running benchmark...
Iter #0: 310.8 img/sec per GPU
Iter #1: 314.4 img/sec per GPU
Iter #2: 312.7 img/sec per GPU
Iter #3: 313.8 img/sec per GPU
Iter #4: 314.5 img/sec per GPU
Img/sec per GPU: 313.2 +-2.7
--------------------------------------------
Total img/sec on 2 GPU(s): 626.5 +-5.4
---------------------------------------------

1.85X on 
2 GPUs

V100
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• Deep Learning models can be trained in multiple ways
– Examples to run data-parallel training with Horovod are available at 

“https://github.com/horovod/horovod/tree/master/examples”

– Single/Multiple GPU jobs -- similar

– Horovod can be configured MPI, GLOO, NCCL, and oneCCL.

– MVAPICH2-GDR offers near-linear speedup for multi-node training

– MVAPICH2-GDR with CUDA-aware design delivers better 
performance

– TensorFlow gives slightly better performance than PyTorch for 
ResNet50. 

Hands-on Exercises: Key Takeaways 
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• Objectives
– End-to-end training performance

– How to train a deep learning model for MNIST dataset on a single NVIDIA GPU?

– How to perform distributed training for MNIST dataset on multiple GPUs using InfiniBand 
and NVIDIA GPUs?

• Tasks
– Train a deep learning model for MNIST on a Single GPU

– Train a deep learning model for MNIST on two nodes with 1 GPU/node (using MVAPICH2-
GDR)

Homework - Overview
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• Examples to run data-parallel training with PyTorch using Horovod

• Available from: https://github.com/horovod/horovod/tree/master/examples

• To train DNN for MNIST on a single GPU, run

python pytorch_mnist.py\

--batch_size=64

Training Deep Learning model for MNIST

https://github.com/horovod/horovod/tree/master/examples
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HW: Train a DL model for MNIST Dataset

$ cd /opt/tutorials/dl-tutorial-21/labs/hw
$ time srun -N 1 --reservation=dltutorial 
run_pytorch_mnist_single.sh

Test set: Average loss: 0.0553, Accuracy: 98.30%

real    5m56.449s
user    0m0.008s
sys     0m0.011s

$ time srun -N 2 --reservation=dltutorial 
run_pytorch_mnist_multi_mv2gdr.sh
Test set: Average loss: 0.0537, Accuracy: 98.33%

real    1m43.860s
user    0m0.007s
sys     0m0.013s
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• Introduction

• Overview of Execution Environments 

• Parallel and Distributed DNN Training

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for Deep Learning

• Solutions and Case Studies

• Open Issues and Challenges

• Hands-on Exercises

• Conclusion 

Outline
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• Exponential growth in Deep Learning frameworks

• Provided an overview of issues, challenges, and opportunities for 
communication runtimes 
– Efficient, scalable, and hierarchical designs are crucial for DL frameworks

– Co-design of communication runtimes and DL frameworks will be essential
• OSU-Caffe

• TensorFlow (Baidu, Uber’s Horovod, etc.)

• Neon and Nervana Graph

• Need collaborative efforts to achieve the full potential

• Standardization may help remove fragmentation in DL frameworks

Conclusion
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Thank You!
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