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The Artificial Intelligence Revolution

* Artificial Intelligence (Al) is the science of training

machines to perform human tasks.

— “Human intelligence exhibited by machines”

e Common use cases

Object recognition

Speech recognition / sound detection
Natural Language Processing

Health Systems

Marketing / Advertisements

e Learning by example / pattern

Machine Learning

Deep Learning

ISC 21
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http://www.deeplearningbook.org/contents/intro.html
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History: Milestones in the Development of Neural Networks
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https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

What is Deep Learning?

ARTIFICIAL

e Deep Learning (DL) bl s MACHINE

: : - LEARNING
— A subset of Machine Learning that uses o  DEEP

Deep Neural Networks (DNNs) . ' CorzG,  LEARNING
— Perhaps, the most revolutionary subset! |

e Based on learning data representation

* Examples Convolutional Neural Networks, 19505 1960's 19705 1980 1990's 20005  2010's

Recurrent Neural Networks, Hybrid
Networks Machine Learning

e Data Scientist or Developer Perspective ,& — L% — % _..-

1. Identify DL as solution to a problem i Feature extraction Stassiication Output

Determine Data Set Deep Learning

2.
3. Select Deep Learning Algorithm to Use _& . E%E —
4,

Use a large data set to train an mput Resiinesctacon = Chsstication Output

. Courtesy: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-
d IgO rlth m and-deep-learning-1pcv3zeg, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
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Deep Learning and High-Performance Architectures

e NVIDIA GPUs are the main driving force for faster training of DL models

— The ImageNet Challenge - (ILSVRC) -- 90% of the teams used GPUs (2014)* @ NVIDIA Volta
: . @ NVIDIA Pascal
— Deep Neural Networks (DNNs) like ResNet(s) and Inception
NVIDIA Kepler

e However, High Performance Architectures for DL and HPC are evolving
— 110/500 Top HPC systems use NVIDIA Volta GPUs (Nov '20)
— DGX-1 (Pascal) and DGX-2 (Volta)
e Dedicated DL supercomputers
— Cascade-Lake Xeon CPUs have 28 cores/socket (TACC Frontera— #9 on Top500)
— AMD EPYC (Rome) CPUs have 64 cores/socket
— AMD GPUs will be powering Frontier — DOE’s Exascale System at ORNL

— Domain Specific Accelerators for DNNs are also emerging

Accelerator/CP
Performance Share
www.top500.org

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/
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Deep Learning Use Cases and Growth Trends

1.1 Artificial Intelligence Revenue, World Markets: 2016-2025 1.2 Artificial Intelligence Revenue, Top 10 Use Cases, World Markets: 2025
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Courtesy: https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/
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So what is a Deep Neural Network?

e Example of a 3-layer Deep Neural Network (DNN) — (input layer is not counted)

put layer

Input layer
hidden layer 1 hidden layer 2

Courtesy: http://cs231n.github.io/neural-networks-1/
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Graphical/Mathematical Intuitions for DNNs
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Courtesy: http://cs231n.github.io/neural-networks-1/

The Mathematical Model
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Key Phases of Deep Learning

e Training is compute intensive

— Many passes over data Training
- - C he forward “"dog”
— Can take days to weeks — OSSN0 >y ~ labels
. . o~ ! L - C ﬂ}%ﬁ \':{i’" ;II =? “"'Ll"human Face” H‘
— Model adjustment is done \ v > ‘v\"*&f ) |
' argeN O backward - error
e |nference e

Inference N

( )x‘.\\"
P

i

! I:':.\ 3 ( |
kv~ Forward

-

— Single pass over the data > “human Face”

.

i O~
B O =X
— Should take seconds \ smaller, =P
_ ' varied N ~
— No model adJUStment Courtesy: https://devblogs.nvidia.com/

e Challenge: How to make “Training” faster?

— Need Parallel and Distributed Training...
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TensorFlow playground (Quick Demo)

e To actually train a network, please visit: http://playground.tensorflow.org

.:) Epoct Learning rate Activatior Regularization Regularization rate Problem type
]
000. 1 10’ 0.03 - Tanh - MNone - 0 - Classification
DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT

Which dataset do Which properties Tast loss 0.006
you want to usa? do you want to Training loss 0.005
feed in? = = s = N

4 neurons 2 Neurcns

REGEMNERATE
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Inference on trained ResNet50 (Quick Demo)

e To try your own image, please visit: https://microsoft.github.io/onnxjs-demo/#/resnet50

Select Backend: GPU-WebGL -

Select image~ or UPLOAD IMAGE Inference Time:  38.0 ms

library | 09%
bookshop 1%
restaurant 0%

tobacco shop 0%

bookcase 0%
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The Impact of Deep Learning on Application Areas

Synthesized Image

#NeuralDoodle

‘chok]ad ol -G LE '\CHOCOLATE

- ; 5 ; DE _.d' W
XL Eﬂu]-..les rat ' Mork — Dark XL COOQKIES®/

Courtesy: https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html Courtesy: https://arxiv.org/pdf/1808.02334.pdf
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Google Translate

1/14/7544919/google-translate-update-real-time-signs-conversations
Network Based Computing Laboratory ISC 21 16
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Self Driving Cars

i
LEFT REARWARD VEHICIE CAMERA =5

MEDIUM RANGE VEHICLE CAMERA

'1

HOTION FLOW LANE LINES ROAD FLOW IN-PATH OBJECTS ROAD LIGHTS OBJECTS ROAD SIGHS RIGHT REARWARD UEHICLE CAMERA

Courtesy: http://www.teslarati.com/teslas-full-self-driving ility-arrive-3-months-definitely-6-months-says-musk
Network Based Computing Laboratory ISC 21 17
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Al-Driven Digital Pathology

Blank sections

e Applications ]
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— Metastasis Detection in Breast Cancer %

< Molecular Profiling & Mutational Analysis
— Genetic Mutation Prediction — | J osidoridoir I .M
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Most Well Known Application Area: Computer Vision

e Computer Vision Applications (image classification, object detection ....)

— For many, the default answer is Convolutional Neural Networks (CNNs)

e Convolutional Neural Network
— Dense Layers (used a classifier)

— Convolution Layer (used as Feature Extraction layer)

e Convolution operation

0 0 ol = p
. . . ] bird
e Activation function ‘_b_\._:,‘g :
“._— ,‘ .
| DL |/ At
e Pooling o RN sunset [ P,
D =“ 0
A |0 ‘ 0
0 D
5 . dog [P Py
0 —
0 —
» ol
convolution + max pooling vec :
nonlinearity | o o
| |
convolution + pooling layers fully connected layers  Nx binary classification

Courtesy: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
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What is a Convolution Operation? Why do we need it?

Input Filter Result Input Feature Map Output Feature Map
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Courtesy: https://www.analyticsvidhya.com/blog/2018/12/guide-convolutional-neural-network-cnn/
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Example of a Convolution Filter

1 -2 |1 -1 1
Sobel Filter o |lo lo 2 lo |2
1 1 1
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DL Frameworks, Hardware Architectures, and Distributed Training

e Deep Learning frameworks have emerged

— hide most of the complicated mathematics

— focus on the design of neural networks

e We have saturated the peak potential of current-
generation architectures

— A single GPU or a many-core CPU is not enough!
e Two strategies to deal with current limitations

— Parallel (multiple units in a single node) and/or
Distributed (multiple nodes) training of DNNs

— Dedicated hardware architectures for DNNs are
being developed

e DL Frameworks will need to be enhanced for both
strategies

1

Math: y= ~ (We+bh)

Cl+e

Minerva Program:

Matrix yv = (W*x + b).Map(&Sigmoid)

¥ ¥.1 y.2
1
a(z)= - M M
l4+e~
- S
b.1 b.2
b x x o b4t
X W | %2 W.11| |W.iz| [W.21] |W.22
(a) Dataflow (b) Dataflow after Data Partitioning

Statement and its dataflow fragment. The
data and computing vertexes with different
colors reside on different processes.

Courtesy: https://web.stanford.edu/~rezab/nips2014workshop/submits/minerva.pdf
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Deep Learning Frameworks

e Many Deep Learning frameworks!! ff
— Google TensorFlow C a e

— Facebook Torch/PyTorch

— Berkeley Caffe N I.\ ' Q
— Microsoft CNTK Tensor

— Chainer/ChainerMN

— Intel Neon/Nervana Graph PYT b RCH

e Open Neural Net eXchange (ONNX) Format




Google TensorFlow (Most Popular)

e The most widely used framework open-sourced by Google
e Replaced Google’s DistBelief framework

e Runs on almost all architectures (CPU, GPU, TPU, Mobile, etc.)
e Gone back and forth for APIs

— TF 1.0 — Lazy Execution and Sessions/Estimators

— TF 2.0 — Eager Execution and tf.keras = r\
e https://github.com/tensorflow/tensorflow

Tensor

Courtesy: https://www.tensorflow.org/

Martin Abadi et al., “TensorFlow: A system for large-scale machine learning” https://ai.google/research/pubs/pub45381
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Facebook Torch/PyTorch - Catching up fast!

e Torch was written in Lua P Y T 6 R C H

— Adoption wasn’t wide-spread

+
e PyTorch is a Python adaptation of Torch 6 C ff 2
— Gaining lot of attention — a e
e Several contributors

— Biggest support by Facebook

e PyTorch and Caffe2 have been merged now to PyTorch

e Key selling point is ease of expression and “define-by-run” approach

Network Based Computing Laborator



MXNet

e MXNet m

— An Apache incubator project

— Strongly supported by Amazon now ?‘ GLUON
e D2L.ai — A deep learning book with |

— Interactive jupyter notebooks, math formula, and a forum
e MXNet -- can work as a Keras backend
e Key selling point: Rich and flexible ecosystem with Gluon

— GluonCV — Computer Vision

— GluonNLP — Natural Language Processing

Network Based Computing Laborator
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Open Neural Network eXchange (ONNX) Format

e ONNX- Not a Deep Learning framework but an open format to
exchange “trained” networks across different frameworks

e Currently supported
— Frameworks: Caffe2, Chainer, CNTK, MXNet, PyTorch

— Convertors: CoreML, TensorFlow

O—e
— Runtimes: NVIDIA J}. I/k
o« II..' .ll ‘7_. t:;hx
_— f.‘ N\ '_(\ .

e https://onnx.ai B t ;—- ,-——-.

y Sl \

& .
e https://github.com/onnx .) / s a;rl-;a "
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Many Other DL Frameworks...

e (Caffe — https://caffe.berkeleyvision.org

e Keras - https://keras.io

e Theano - http://deeplearning.net/software/theano/

e Blocks - https://blocks.readthedocs.io/en/latest/

e Intel BigDL - https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-

on-apache-spark

e The list keeps growing and the names keep getting longer and weirder ;-)

— Livermore Big Artificial Neural Network Toolkit (LBANN) -
https://github.com/LLNL/Ibann

— Deep Scalable Sparse Tensor Network Engine (DSSTNE) -
https://github.com/amzn/amazon-dsstne

Network Based Computing Laborator


https://caffe.berkeleyvision.org/
https://keras.io/
http://deeplearning.net/software/theano/
https://blocks.readthedocs.io/en/latest/
https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
https://github.com/LLNL/lbann
https://github.com/amzn/amazon-dsstne

Statistics about DL Frameworks

NUMBER of GITHUB STARS by Al LIBRARY, 2014-20
St i rt

ource: GitHub, 2020 | Chart: 2021 Al Index Repor

150

e Al Index report offers very
detailed trends about Al and ML

— Interesting stats. about DL

100

51Keras

Cumulative Github Stars (in Thousand)

50
frameworks
e —— 7 Cntk
o L ——— 8 Caffe2
2014 2015 2016 2017 2018 2019 2020
NUMBER of GITHUB STARS by Al LIBRARY (excluding TENSORFLOW), 2014-20
. * - Source: GitHub, 2020 | Chart: 2021 Al Index Report
e TheGradient™ has a latest article

50

on PyTorch winning over
TensorFlow in CVPR, ICML, ICLR

and other conferences

40

31 BVLC/caffe
30

20 19 MXNet

17 Cntk

Cumulative Github Stars (in Thousand)

* https://thegradient.pub/state-of-ml-frameworks-2019- 8 Cafez
pytorch-dominates-research-tensorflow-dominates-industry/ 0 /

2014 2015 2016 2017 2018 2019 2020

Courtesy: https://aiindex.stanford.org
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Architectures and Execution Environments for DL frameworks?

e Early (2014) frameworks used a single fast GPU
e Today, parallel training on multiple GPUs is being supported by most frameworks
e Distributed (multiple nodes) training is still upcoming

— A lot of fragmentation in the efforts (Horovod, MPI, NCCL, Gloo, gRPC, etc.)

e Hardware and Software Architectures for DL are also emerging
— Habana, Nervana, Google TPUs, and many more...
— Smartphones - OK Google, Siri, Cortana, Alexa, etc.
— DrivePX —the computer that drives NVIDIA’s self-driving car
— Deeplearn.js (a DL framework in a web-browser)

— TensorFlow playground - http://playground.tensorflow.org/

Network Based Computing Laborator
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Conventional Execution on GPUs and CPUs

e \We all have heard

— Our framework is faster than your framework!
e This needs to be understood in a holistic way

e Performance
— Depends on the entire execution environment (the full architectural stack)
— Multiple helper libraries and systems have an impact

e |solated view of performance is not helpful for ML/DL workloads

e Architecture-specific (CPU/GPU/TPU) optimizations need to be
developed and properly used

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training
on Modern Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.

Network Based Computing Laborator ISC 21 33



DL Frameworks and Underlying Libraries

e BLAS Libraries — the heart of math DL Applications (Image Recognition, Speech Processing, etc.)
operations ‘ & i
— Atlas/OpenBLAS DL Frameworks (Caffe, TensorFlow, etc.)
— NVIDIA cuBlas
_ Generic MKL Optimized cuDNN Optimized
— Intel Math Kernel Library (MKL) Convolution Layer Convolution Layer ConvolutionLayer
e Most compute intensive layers are l
generally optimized for a specific l' J’

hardware
ATLAS OpenBLAS MKL 2017 cuDNN/cuBLAS

— E.g. Convolution Layer, Pooling Layer, etc.

Other BLAS Libraries

e DNN Libraries —the heart of Convolutions!
, BLAS Libraries
— NVIDIA cuDNN (already reached its 7t l l

iteration — cudnn-v7) Other p
. ther Processors Multi-/Many-core Many-core GPU
— Intel MKL-DNN — a promising development (Xeon, Xeon Phi) (Pascal P100)
for CPU-based ML/DL training Hardware

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training
on Modern Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.
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Where does the Performance come from?
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(a) AlexNet: Forward Propagation

e The full landscape: Forward and Backward Pass -- Faster Convolutions = Faster Training
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(b) AlexNet: Backward Propagation
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e Performance of Intel KNL == NVIDIA P100 for AlexNet Training — Volta is in a different league!

Most performance gains are based on improvements in layer conv2 and conv3 for AlexNet

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training on Modern
Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.
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Understanding the Deep Neural Network Concepts

e Example of a 3-layer Deep Neural Network (DNN) — (input layer is not counted)

put layer

Input layer
hidden layer 1 hidden layer 2

Courtesy: http://cs231n.github.io/neural-networks-1/
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Deep Neural Network Concepts : Forward Pass

Input Hidden Hidden Output
Layer Layer Layer Layer




Deep Neural Network Concepts : Forward Pass
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Deep Neural Network Concepts : Forward Pass
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Deep Neural Network Concepts : Forward Pass
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Deep Neural Network Concepts : Forward Pass

Forward Pass

v

Pred

Error = Loss(Pred,Output)

Input Hidden Hidden Output
Layer Layer Layer Layer
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Deep Neural Network Concepts : Backward Pass

Forward Pass
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Error = Loss(Pred,Output)
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Deep Neural Network Concepts : Backward Pass

Forward Pass
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Deep Neural Network Concepts : Backward Pass

Forward Pass

v

«—

Error = Loss(Pred,Output)

A

Backward Pass

Input Hidden Hidden Output
Layer Layer Layer Layer
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Deep Neural Network Concepts : DNN Training

X ) O
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Essential Concepts: Activation function and Back-propagation

e Back-propagation involves input output
complicated mathematics.

— Luckily, most DL Frameworks give
you a one line implementation --

model .backward () aq'? = g( x) q% = g( a(zl)
input neuron hidden neuron output neuron
linear combination activation linear combination activation output: al®
26— alt=g(2) #9020, — aP=g(2) | target: y
e \What are Activation functions? Courtesy: https://www.jeremyjordan.me/neural-networks-training/

— RELU (a Max fn.) is the most common activation fn.

— Sigmoid, tanh, etc. are also used
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Essential Concepts: Learning Rate (a)

Too low Just right Too high
1(68) f.f 1(0) | f.f J(8)] &= f.f
a’f Il'x a’f Il'x *"ff
.-'Illll III'IIII / |
.1_
0 6

A small learning rate

requires many updates

before reaching the
minimum point

Courtesy:

The optimal learning
rate swiftly reaches the
minimum point

https://www.jeremyjordan.me/nn-learning-rate/

ISC 21

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors
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Essential Concepts: Batch Size

e Batched Gradient Descent N

— Batch Size=1
e Mini-batch Gradient Descent

— Somewhere in the middle | n - n w "
Mini Mini Mini Mini Mini Mini
batch 1 batch 2 batch 4 batch 6 batch 7 batch 8
— Common:

e Batch Size = 64, 128, 256, etc.

* Finding the optimal batch Batch Size One full pass overﬂ is called an EQOCh of training

size will yield the fastest
learning.

Courtesy: https://www.jeremyjordan.me/gradient-descent/
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The Need for Parallel and Distributed Training

e Why do we need Parallel Training?

e Larger and Deeper models are being proposed
— AlexNet -> ResNet -> NASNet — AmoebaNet
— DNNSs require a lot of memory and a lot of computation

— Larger models cannot fit a GPU’s memory
e Single GPU training cannot keep up with ever-larger models
e Community has moved to multi-GPU training

e Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)

e Multi-node (Distributed or Parallel) Training is necessary!!




Synchronous vs. Asynchronous Training

e Epochs per second (EPS)?

— A variant of images/second

— Basically, what is the speed of A Naive Async SGD
aive Async

training the model

e Accuracy per Epoch (APE)?

— E.g. 60% in one full pass over the
dataset

Epochs per Second

>
Accuracy Per Epoch

e Async > Higher EPS but lower APE

¢ Sync 9 ngher APE bUt IOwer EPS Courtesy: http://engineering.skymind.io/distributed-deep-learning-

part-1-an-introduction-to-distributed-training-of-neural-networks
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Impact of Model Size and Dataset Size

model > data

e [arge models = better accuracy

e More data 2 better accuracy

e Single-node Training; good for

Network Size

— Small model and small dataset Single Machine

e Distributed Training; good for: data > model | pyt4 Size

— Large models and large datasets

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
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Overfitting and Underfitting

e OQverfitting — model > data = so model is not learning but memorizing your data

e Underfitting — data > model = so model is not learning because it cannot capture the
complexity of your data

Underfitting Balanced Owverfitting

Courtesy: https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
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Impact of Large Batch Size

GoogleNet (ImageNet) on 128 GPUs

250
5 40 3 200
S5, 3 150
et Q
kS £
- = 100
.50 e
7 £
=] © 50
T 25 "
2 0
E 20 F " 1 L 1 1 1 1 1 ] J 8 16 32 64 128
64 128 256 512 1k 2k 4k 8k 16k 32k 64k No. of GPUs

mini-batch size
m Caffe ® OSU-Caffe (1024) m OSU-Caffe (2048)

Large Batch Size is bad for Accuracy But good for speed and scalability

A. A. Awan et al., S-Caffe: Co-designing MPI Runtimes and Caffe

Courtesy: https://research.fb.com/publications/imagenetlkinlh/
for Scalable Deep Learning on Modern GPU Clusters. PPoPP '17
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Parallelization Strategies

L .  Machine 4 ——— Y
e Some parallelization strategies.. i 7_§;
. . r T I 1
— Data Parallelism or Model Parallelism i Machine 2 ];i Machine 3 !
! ! I
— Hybrid Parallelism '----:.-.-.—.-.-.—.—.—.’_EE:/-H:] """""""
I Machine 1 :
|
|

Machine 1

Machine 2

Data Parallelism
Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

Hybrid (Model and Data) Parallelism

Network Based Computing Laborator
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Data Parallelism and MPI Collectives

. Dataset
e Stepl: Data Propagation Loop {}
— Distribute the Data among GPUs S
.... | LData |
e Step2: Forward Backward Pass ! ' Propagation |
S |_Params 5 |_Params S |_Params © |_Params L -
a a a a
— Perform forward pass and 3 HEEE ) HEEN c) HEEE =3 HEEE
calculate the prediction i » L L Frass=o
) F L B F L B F L B £ L A I
— Calculate Error by comparing i : o ’ ' Backward |
. : L L L L Lo DS
prediction with actual output ’ i i i
Local Local Local Local
— Perform backward pass and Gradients Gradients Gradients Gradients
[ [ ] | [ [ ] [ [ ] | [ [ ]

calculate gradients | T o~ T

e Step3: Gradient Aggregation | 3. Gradent |
Aggregation |

1
— Call MPI_Allreduce to reducethe | - TR e el .
local gradients olohar ] Global oo [ Global
. Gradients Gradients Gradients Gradients
— Update parameters locally using [ T[] EREN [ [ [ [ ]

global gradients

—-&

Update Parameters
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Benefits of Data Parallel Training: Using OSU-Caffe

e Strong scaling CIFAR10 Training with
OSU-Caffe (1 —> 4 GPUs) — Batch Size 2K

e Large batch size is needed for
scalability.

e Adding more GPUs will degrade the
scaling efficient

Run Command - (change Snp from 1—4)

mpirun_rsh -np $np ./build/tools/caffe

train -solver
examples/cifar10/cifar10_quick_solver.prototxt
-scal strong

Output: 10123 21:49:24.289763 75582 caffe.cpp:351] Avg. Time Taken: 142.101
Output: 10123 21:54:03.449211 97694 caffe.cpp:351] Avg. Time Taken: 74.6679

Output: 10123 22:02:46.858219 20659 caffe.cpp:351] Avg. Time Taken: 39.8109

160
140

—

Time (seconds

= =
H OO 00 O N
© © 0 6 o

N
o O

CIFAR-10 Training with OSU-Caffe

CIFAR-10
® 1-GPU 2-GPUs 4-GPUs

OSU-Caffe is available from the HiDL project page
http://hidl.cse.ohio-state.edu
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High-Performance Architectures: Drivers of Modern HPC Clusters

Accelerators
high compute density, high
performance/watt
>1 TFlop DP on a chip

High Performance Interconnects -
Multi-/Many-core InfiniBand

Processors <1lusec latency, 200Gbps Bandwidth>

e Multi-core/many-core technologies

SSD, NVMe-SSD, NVRAM

e Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
e Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
e Accelerators (NVIDIA GPGPUs)

e Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.

Summit Sunway Taihulight | erra K- Computer
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High-Performance Architectures for Distributed DL

e Hardware Architectures

— Interconnects

e InfiniBand, RoCE, Omni-Path, Slingshot, etc.

— Processors
e GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU), FPGAs, etc.

e Communication Middleware

— Message Passing Interface (MPI)
e CUDA-Aware MPI

— NVIDIA NCCL




Overview of High Performance Interconnects

e High-Performance Computing (HPC) has adopted advanced interconnects and protocols
— InfiniBand (IB)
— Omni-Path
— High Speed Ethernet 10/25/40/50/100/200 Gigabit Ethernet/iWARP
— RDMA over Converged Enhanced Ethernet (RoCE)
e Very Good Performance
— Low latency (few micro seconds)
— High Bandwidth (200 Gb/s with HDR InfiniBand)
— Low CPU overhead (5-10%)

e OpenFabrics software stack with IB, Omni-Path, iWARP and RoCE interfaces are driving HPC systems

e Many such systems in Top500 list




InfiniBand Link Speed Standardization Roadmap

rF
10.000 XDR = eXtreme Data Rate
’ NDR = Next Data Rate
HDR = High Data Rate
EDR = Enhanced Data Rate
» 4x Link Bandwidth FDR = Fourteen Data Rate et
B~ QDR = Quad Data Rate —
O FDR EDR HDR DDR = Double Data Rate (not shown) >
> /s 1 / / =Si "
g 56 Gb/s 100 Gb/s 200 Gb/s SDR = Single Data Rate (not shown) & ° »
2 1,000 e -
L - -
g i -
o= /E'gﬁ - XDR
E P y <
a i NDR o
5 lzx 200G = - -
5 168G HDR 2 <
S 100 _ - :
= ax = g
f o= et <
- . =
= FDR E
— d K
QDR  1X 1’7‘ !NI}-‘_INSI__B_AND g
RADE ASSO0C A ON =
14G : "
10 5
| 1 ] | | | | I W e o » ©

] 1 I I T I T I 1 I
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Courtesy: InfiniBand Trade Association
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Hardware for DNN Training and Inference: TPUs

— — DDR3 DRAM C ( | )
erem— Google
14 GiB/s 30 GIBs y A [lcat“)n
Waeight FIFO Pp
| ioroes | == | it Ftenen_ . /
-—- {} 0 Glgls . I '\ Google
- o TensorFlow Application
u - -
= o Unified 167 Hmu::*ﬂw ,f""""""%% ---------- "
14 GIB/s E'g 14 GiBls 'E T Sysiolle. (0F (64K por cycle) Lo 5 = = 'R
D87 | <=>| Activation Setup " reamgxecutor ;
E g Storage) %
- 4 Accumulators | ; _ . C
’ - ; User Space Driver .
Acthvati P ro
5 P | . 72
- £ 167 GiBs e : Kernel Driver i
] orchipio 1=]j “uh_“u”-““““““““““““““““““““J /
Dats Bofer
E: | _-—
B controa
Mot 10 Scale Tensor Processing Unit

e CISC style instruction set

e Uses systolic arrays as the heart of multiply unit

Courtesy: https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

: https://www.nextplatform.com/2017/04/05/first-depth-look-googles-tpu-architecture/
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Hardware for DNN Training and Inference: IPUs

RESNET-50 TRAINING

e Specifically designed for Al workloads —an
Intelligence Processing Unit (IPU)
— Massively parallel i
— Lowe-precision floating-point compute

single =2 1PU Acceleraior cards
Batch=4 Bt Batch=4

— Higher compute density

° Early benchmarks show 10-100x speedup LSTM SINGLE LAYER INFERENCE
over GPUs
— Presented at NIPS 2017 OV ot i

e HPC Wire: Microsoft Azure IPU instances
https://www.hpcwire.com/2019/11/15/microsoft-azure-adds-

graphcores-ipu/

Courtesy: https://www.graphcore.ai/posts/preliminary-ipu-benchmarks-providing-previously-unseen-performance-for-a-range-of-machine-learning-applications
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Hardware for DNN Training: Habana Gaudi

e Habana Labs — Training Accelerator called Gaudi — (HotChips ‘19)
e Gaudi— Al processor with RoCE integrated

e Gaudi software — Enables high-level frameworks 1,80 18
600 | mGaudi mV100 =T4 | 6
 Intel has acquired Habana for $2 billion! 2 1,400 | 14
2 1,200 - En 12 =
o ()
S 1,000 - 10 =
W @
= 800 - -8 2
@ 600 | 5 &
g 400 - - 4
E 200 - - 2
0 - -0

ResNet-50 IPS ResNet-50 IPS/W

Figure 1. Gaudi emulated performance. For training the simple
ResNet-50 model, Habana's Gaudi card offers throughput sim-
ilar to that of Nvidia's high-end V100 GPU at half the power.
It also beats Nvidia's Tesla T4 card in performance per watt.

Courtesy: https://habana.ai/wp-content/uploads/2019/06/Habana-Offers-Gaudi-for-Al-Training.pdf
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Hardware for DNN Training: Cerebras

e Cerebras: First-Gen Wafer-Scale Engine (WSE) contains 400,000 Sparse Linear
Algebra Compute (SLAC) Cores

e Swarm Communication fabric in a 2D mesh with 100 Pb/s of bandwidth

e Teased World’s Largest Chip with 2.6 Trillion 7nm Transistors and 850000
Cores (HotChips ‘20)

Courtesy: https://www.cerebras.net/product/tchip, https://www.tomshardware.com/news/worlds-biggest-chip-cerebras-7nm-26-
trillion-transistors- 850000 -cores-wafer-scale-engine
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High-Performance Architectures for Distributed DL

e Hardware Architectures

— Interconnects

e InfiniBand, RoCE, Omni-Path, etc.

— Processors

e GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU), FPGAs, etc.

e Communication Middleware

— Message Passing Interface (MPI)
e CUDA-Aware MPI

— NVIDIA NCCL




Parallel Programming Models Overview

P1 P2 P3 P1 S P2 <«<— P3 P1 <> P2 <«<— P3
| | l | | l | A
I I
| |
Shared Memory Memory Memory Memory Memory || Memory |, | Memory
Logical shared memory
! !
Shared Memory Model Distributed Memory Model Partitioned Global Address Space (PGAS)
SHMEM, DSM MPI (Message Passing Interface) OpenSHMEM, UPC, Chapel, X10, CAF, ...

e Programming models provide abstract machine models

e Models can be mapped on different types of systems

— e.g. Distributed Shared Memory (DSM), MPI within a node, etc.
e PGAS models and Hybrid MPI+PGAS models are gradually receiving importance
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Allreduce Collective Communication Pattern

e Element-wise Sum data from all processes and sends to all processes

t

int MPI_Allreduce (const void *sendbuf, void * recvbuf, int count, MPI_Datatype datatype,

MPI_Op operation, MPI_Comm comm) ]

Sendbuf (Before)
Parameter Description
sendbuf Starting address of send buffer T1 12 13
recvbuf Starting address of recv buffer
type Data type of buffer elements . " . "
count Number of elements in the buffers
operation Reduction operation to be performed (e.g. sum) Recvbuf (After)
comm Communicator handle " - 3

4
Parameter Description 182
recvbuf Starting address of receive buffer 16




Overview of the MVAPICH2 Project

High Performance open-source MPI Library \ﬁ/&//_—‘

Support for multiple interconnects /f(/ \\\ 2 OYearS & |

— InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), and AWS EFA S .\Y.‘//
. i\

Support for multiple platforms ' ( \ Count’ng! 7\) v

—  x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD) 2001_2021 / /1\
Started in 2001, first open-source version demonstrated at SC ‘02

* Used by more than 3,175 organizations in 89 countries
Supports the latest MPI-3.1 standard
_ ) *  More than 1.39 Million downloads from the OSU site
http://mvapich.cse.ohio-state.edu
N o . . _ directly
Additional optimized versions for different systems/environments:
. , .

—  MVAPICH2-GDR with support for NVIDIA GPGPUs, since 2014 — 4%, 10,649,600-core (Sunway Taihulight) at NSC, Wuxi, China

—  MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014 — 9th 448, 448 cores (Frontera) at TACC

- MVAPICH2-Virt with virtualization support, since 2015 — 14t 391,680 cores (ABCI) in Japan

—  MVAPICH2-EA with support for Energy-Awareness, since 2015 — 21, 570,020 cores (Nurion) in South Korea and many others

- MVAPICH2-Azure for Azure HPC IB instances, since 2019

L MVAPICH2-X-AWS for AWS HPCHEFA instances, since 2019 e Available with software stacks of many vendors and Linux
Tools: Distros (RedHat, SuSE, OpenHPC, and Spack)

—  OSU MPI Micro-Benchmarks (OMB), since 2003 e Partner in the 9t ranked TACC Frontera system

— OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015 .
y 8 ) e Empowering Top500 systems for more than 16 years
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GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GDR

e Standard MPI interfaces used for unified data movement
e Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

e QOverlaps data movement from GPU with RDMA transfers

At Sender:

MPI Send(s devbuf, size, ...); inside
MVAPICH2

At Receiver:
MPI Recv(r_devbuf, size, ...);

High Performance and High Productivity

Network Based Computing Laborator



Optimized MVAPICH2-GDR Design

GPU-GPU Inter-node Latency GPU-GPU Inter-node Bi-Bandwidth
30 6000
25 —_
— = 5000
3 20 =)
. S 4000
£ 10 5 3000 11X
5 1.85us | 10x 2 2000
c
0O & o 1000
O 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 0 AL ;—-—.—‘—*-"*‘
AR T > T S-S TS B T~
Message Size (Bytes) oo
Message Size (Bytes)
=#&=MV2-(NO-GDR) MV2-GDR 2.3 «fr=MV2-(NO-GDR) MV2-GDR-2.3
- GPU-GPU Inter-node Bandwidth
o 3500
2 3000
= 2500
% 2000 9x MVAPICH2-GDR-2.3.1
§ iggg Intel Haswell (E5-2687W @ 3.10 GHz) node - 20 cores

NVIDIA Volta V100 GPU

500
0 A—Ek—i—& ;—-—h—l—*—l—f*‘ Mellanox Connect-X4 EDR HCA
1 2 4 8

16 32 64 128256512 1K 2K 4K CUDA 9.0
Mellanox OFED 4.0 with GPU-Direct-RDMA
Message Size (Bytes)

== MV2-(NO-GDR) MV2-GDR-2.3
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NCCL Communication Library

e NVIDIA Collective Communication Library (NCCL)
e Main Motivation: Deep Learning workloads
e NCCL1- efficient dense-GPU communication within the node

e NCCL2- multiple DGX systems connected to each other with InfiniBand systems

Multi-GPU

GPU Multi-GPU MilE-rode

Courtesy: https://developer.nvidia.com/nccl
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Broad Challenge: Exploiting HPC for Deep Learning

How to efficiently scale-out a

Deep Learning (DL) framework and take
advantage of heterogeneous

High Performance Computing (HPC) resources?
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Research Challenges to Exploit HPC Technologies

1. What are the fundamental
issues in designing DL
frameworks?

— Memory Requirements
— Computation Requirements

— Communication Overhead

2. Why do we need to support
distributed training?

— To overcome the limits of
single-node training

— To better utilize hundreds of
existing HPC Clusters

\) Deep Learning and Machine Learning Frameworks

Caffe/
[ CNTK ] [ 0SU-Caffe ] [ Caffe2 ] [ TensorFlow ] [ MXNet J
= y

\ U4
\ U4
\ Major Computation and Communication Phases in DL Frameworks ,’

S /

\ o
\ Model Propagation ALLEI: Grad|en.t /,
\ Backward Aggregation

2' Communication Runtimes to support
| Distributed Training

¥ ¥

InfiniBand
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Research Challenges to Exploit HPC Technologies (Cont’d)

3. What are the new design challenges
brought forward by DL frameworks for Deep Learning and Machine Learning Frameworks
Communication runtimes?
] Caffe/
CommunicationandReductions \\:.......................Q............................ ,lv
> Major C tati dc ication Phases in DL F k . /
_ GPU Buffers (CUDA-Awareness) E\ . ajor Computation an ommunication asesin rameV\Tor S .v,
° N\ Model Propagation ALLEI: Gradlen.t /'o
° \ Backward Aggregation °
4. Can a Co-design approach help in achieving\4 > 3 I I Co-Desigfn.
Scale-up and Scale-out efficiently? Communication Runtimes (MPI/NCCL/Gloo/MLSL) Opportunities

— Co-Design the support at Runtime
level and Exploit it at the DL

Point-to-Point CUDA- Large-message é)
Framework level .

Operations Awareness Collectives

¥ ¥ ¥

— What performance benefits can be

observed? ==
InfiniBand GPU

— What needs to be fixed at the
communication runtime layer?
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Solutions and Case Studies: Exploiting HPC for DL

Data Parallelism

Baidu-allreduce
NVIDIA NCCL/NCCL2

Co-design MPI runtimes and DL
Frameworks

Distributed Training for
TensorFlow

Model and Hybrid Parallelism

GPipe
FlexFlow
HyPar-Flow
GEMS
SUPER

Deep Learning and Machine Learning Frameworks

o] |

OSU-Caffe

Caffe/ ] [ Caffe2 ] [TensorFIow] [ MXNet J

\\..................................................... l
(] [ ] ,
\.\ Major Computation and Communication Phases in DL Frameworks . ,/
o\ o
. \\ Model Propagation Forward Gradient »
° \ pag Backward Aggregation ':
L J
[ .
Co-Design
s L - . | en
g Communication Runtimes (MPI/NCCL/Gloo/MLSL) pportunities
([ ] [ ]
[ ] [ ]
| Point-to- Large-message .
. , CUDA- . .
. Point P Collectives .
[ ] . .
- | Operations (Baidu-allreduce) :
[ ]

&
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Baidu’s Ring-Allreduce in TensorFlow

Scaling with TensorkFlow

* Run many independent TensorFlow processes

* Insert allreduce as a node in the graph:

Predictions
— Forward Error Deltas [ p
Frop ' Computation Prop

Gradients

Ring Reduced
Gradients -
Labels s e Weight
Update

Courtesy: http://on-demand.gputechconf.com/gtc/2017/presentation/s7543-andrew-gibiansky-effectively-scakukbg-deep-learning-frameworks.pdf
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MVAPICH2-GDR: Allreduce Comparison with Baidu and OpenMPI
e 16 GPUs (4 nodes) MVAPICH2-GDR vs. Baidu-Allreduce and OpenMPI 3.0

100000 6000000 .
50000 ~10X better OpenMPI is ~5X slower
5000000 than Baidu
10000 e 45000
~
etter 40000
__ 4000000
@ 1000 35000 3
> = 30000 g 3000000 MV2 is ~2X better
c =] [J]
9 = © than Baidu
& 100 % 25000 — 2000000
® 20000
10 1000000
15000 f—
~N
10000 4X better 0
1 ® © N ™ b 6 N
SN A S IR SR
TSI XRIILEIIIISRT 5000 — qga“’ ANV %bP‘ ch‘b(,\ o;;“‘ S
AT NINOOOAMNLLNO e —0= %) 2\ o) N 0" ™ o)
AN S 00O N0 AN 0 ® ,»b ,,)”: Q’)\ ,,)v (ocb ,,)‘o
o M © mn O N 5]
- o 512K 1M 2M aM
Message Size (Bytes) Message Size (Bytes)
Message Size (Bytes)
—e—MVAPICH2 —e—BAIDU OPENMPI —e—MVAPICH2 —e—BAIDU OPENMPI

*Available since MVVAPICH2-GDR 2.3a

—o—MVAPICH2 -—e—BAIDU

OPENMPI
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Solutions and Case Studies: Exploiting HPC for DL

e Data Parallelism

— Baidu-allreduce Deep Learning and Machine Learning Frameworks
— NVIDIA NCCL/NCCL2
Caffe/
, ) CNTK Caffe2 TensorFlow MXNet
— Co-design MPI runtimes and DL OSU-Caffe
\..................................................... lv
Frameworks \X. « ¢
N Major Computation and Communication Phases in DL Frameworks . ,/
_ . . . . ° \
Distributed Training for N " : a—— e x
TensorFlow : \ odel Fropagation Backward Aggregation ':
: : . Co-Design
e Model and Hybrid Parallelism . @ . - o o gn
) g Communication Runtimes (MPI/NCCL/Gloo/MLSL) pportunities
— GPipe : 5
. Point-to- :
— FlexFlow . ) Large-message .
. Point CUDA-Awareness : .
. ) Collectives .
— HyPar-Flow « | Operations .
- GEMS . . = =
— SUPER
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NCCL2: Multi-node GPU Collectives

CNTK scaling
ResNet50, images/s

3000

2000

1000

0 B 16 4 iz

..... Il ——— P ——NCCL

Courtesy: http://on-demand.gputechconf.com/gtc/2017/presentation/s7155-jeaugey-nccl.pdf
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MVAPICH2-GDR vs. NCCL2 - Allreduce Operation (DGX-2)

e Optimized designs in MVAPICH2-GDR offer better/comparable performance for most cases

e MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)

Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 10.1
10000

A~ U
v O
»

\

1000 -
~2.5X better r

35
= 30 =
2 2
> >
825 o 100 ¢
2 et
8 20 ~4.7X better 5

15

10

10

5

0 1

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M 256M
Message Size (Bytes) Message Size (Bytes)
-@—-MVAPICH2-GDR-2.3.4 NCCL-2.6 —&—-MVAPICH2-GDR-2.3.4 NCCL-2.6

C.-H. Chu, P. Kousha, A. Awan, K. S. Khorassani, H. Subramoni and D. K. Panda, "NV-Group: Link-Efficient Reductions for Distributed Deep Learning on Modern Dense GPU
Systems, " 1CS-2020, June-July 2020.

ISC 21



MVAPICH2-GDR: MPI_Allreduce at Scale (ORNL Summit)

e Optimized designs in MVAPICH2-GDR offer better performance for most cases
e MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) up to 1,536 GPUs

Platform: Dual-socket IBM POWER9 CPU, 6 NVIDIA Volta V100 GPUs, and 2-port InfiniBand EDR Interconnect

Latency on 1,536 GPUs Bandwidth on 1,536 GPUs 128MB Message
450 6 10
400 9
c 1.7X better 8
350 v 7
_ 3 & 1.7X better
300 ! -
—_ ~~ <
(%] m =
=2 250 1.6X better o g >
g <3 5 4 T
g 200 3 e
© om
- T 2
150 & 5
| ; 1
100 0 | | [ | | | x x
50 1 24 48 96 192 384 768 1536
Number of GPUs
0
<t 00 O N < 00 O N ¥ ¥ ¥ ¥ ¥ O
el R T YT 3 32M 64M 128M 256M
Message Size (Bytes) Message Size (Bytes)
SpectrumMPI 10.3 ® OpenMPI4.0.1 NCCL2.6 ® MVAPICH2-GDR-2.3.4
=@—-MVAPICH2-GDR-2.3.4 NCCL 2.6 B MVAPICH2-GDR-2.3.4 NCCL 2.6

C.-H. Chu, P. Kousha, A. Awan, K. S. Khorassani, H. Subramoni and D. K. Panda, "NV-Group: Link-Efficient Reductions for Distributed Deep Learning on Modern Dense GPU
Systems, " 1CS-2020, June-July 2020.
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Solutions and Case Studies: Exploiting HPC for DL

e Data Parallelism

_ Baidu-allreduce Deep Learning and Machine Learning Frameworks

— NVIDIA NCCL/NCCL2 [ CNTK ] [ oscjfzzfe ] [ Caffe2 ] [ TensorFlow ] [ MXNet J

— Co-designMPlruntimesand \\.ooooooooooooooooooooooooooooooooooooooooooooooooooo. ,/'
DL Frameworks \:\\ Major Computation and Communication Phases in DL Frameworks ‘E',/

_ H b d o f . \\ Model Propagation ALLEI: Gradien.t /'o
Distributed Training for « N\ Backward Aggregation .
TensorFlow 9 $ $ Co-Design

° - : Opportunities
. . . Communication Runtimes (MPI/NCCL/Gloo/MLSL) Fl
e Model and Hybrid Parallelism o ‘ :
Y . : Large-message Collectives :
— GPipe E Pol;z;cr-:co- CUDA- { Hierarchical Reduce (HR) } .
. : Awareness { NCCL-Bcast/MPI_Bcast } .

— FlexFlow » —Qperations - :

— HyPar-Flow .t ¥ E =

- GEMS

— SUPER
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S-Caffe: Proposed Co-Design Overview

e To address the limitations of Caffe and existing MPI runtimes, we
propose the OSU-Caffe (S-Caffe) framework

e At the application (DL framework) level

— Develop a fine-grain workflow —i.e. layer-wise communication instead
of communicating the entire model

e At the runtime (MPI) level
— Develop support to perform reduction of very-large GPU buffers

— Perform reduction using GPU kernels

OSU-Caffe is available from the HiDL project page
(http://hidl.cse.ohio-state.edu)



http://hidl.cse.ohio-state.edu/

OSU-Caffe: Scalable Deep Learning . ..icnet (magenet) on 128 pUs

e (Caffe : A flexible and layered Deep Learning 250
framework.
e Benefits and Weaknesses 200
— Multi-GPU Training within a single node é
o
— Performance degradation for GPUs across different sockets § 150
— Limited Scale-out g
e 0OSU-Caffe: MPI-based Parallel Training '@ 100
C
— Enable Scale-up (within a node) and Scale-out (across multi- %
GPU nodes) =
— Scale-out on 64 GPUs for training CIFAR-10 network on CIFAR- >0
10 dataset
— Scale-out on 128 GPUs for training GooglLeNet network on 0 X i
ImageNet dataset 8 16 32 64 128

X Invalid use case No. of GPUs

m Caffe  m OSU-Caffe (1024) m OSU-Caffe (2048)

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)
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Solutions and Case Studies: Exploiting HPC for DL

e Data Parallelism

— Baidu-allreduce Deep Learning and Machine Learning Frameworks
— NVIDIA NCCL/NCCL2
Caffe/
] ) CNTK Caffe2 TensorFlow MXNet
— Co-design MPI runtimes and DL OSU-Caffe
\..................................................... lv
Frameworks \X. « ¢
N Major Computation and Communication Phases in DL Frameworks : ,/
_ . ) ) ) ° \
Distributed Training for N " . v e N
TensorFlow ° \ OASITORASERION Backward Aggregation /:
: : . Co-Design
e Model and Hybrid Parallelism . @ . - o Oooort g:t.
GPi : Communication Runtimes (MPI/NCCL/Gloo/MLSL) PROriunities
- ipe C °
P . Poi Large-message Collectives .
— FlexFlow . Oij[-cho- CUDA- { Hierarchical Reduce (HR) } :
. oin :
— HyPar-Flow - |_Operations Awareness [ necubeasymPl_Beast | .
~ GEMS ¥ ¥ ¥
— SUPER

InfiniBand
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Data Parallel Training with TensorFlow (TF)

e Need to understand several options currently available Distributed
o TensorFlow
e gRPC (official support) | — |
— Open-source — can be enhanced by others gRPC gRPC+X No-gRPC
— Accelerated gRPC (add RDMA to gRPC) | | |
Accelerated .
o gRPC+X oRPC — gRPC+MPI Baidu-MPI Horovod
— Use gRPC for bootstrap and rendezvous
—gRPC+Verbs MPI
— Actual communication is in “X”
— X2 MPI, Verbs, GPUDirect RDMA (GDR), etc.
—{ gRPC+GDR NCCL

e No-gRPC
— Baidu —the first one to use MPI Collectives for TF

— Horovod — Use NCCL, or MPI, or any other future library (e.g. IBM DDL support recently added)

A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, “Scalable Distributed DNN Training using TensorFlow and
CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation”, CCGrid ‘19. https://arxiv.org/abs/1810.11112
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MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

< ML/DL Applications > < ML/DL Applications >
\

/ A 4
TensorFlow PyTorch MXNet PyTO r‘ch
<<-(Horovod Torch.distributed DeepSpeed D

{ MVAPICH2 or MVAPICH2-X }{ MVAPICH2-GDR for }

MVAPICH2 or MVAPICH2-X MVAPICH2-GDR for
for CPU Training GPU Training

for CPU Training GPU Training

More details available from: http://hidl.cse.ohio-state.edu



http://hidl.cse.ohio-state.edu/

Scalable TensorFlow using Horovod and MVAPICH2-GDR

e ResNet-50 Training using TensorFlow benchmark on 1 DGX-2 node (16 Volta GPUs)

Platform: Nvidia DGX-2 system, CUDA 9.2

7000

6000

5000

4000

er second

o
S 3000
o0
(4%}
£ 2000

1000
0 ]
1

NCCL-2.6

9% higher

¢

-II
2 4 8 16

Number of GPUs

B MVAPICH2-GDR-2.3.3

100
90
80
70
60
50
40
30
20
10

Scaling Efficiency (%)

Scaling Efficiency =

Actual throughput

Ideal throughput at scale

X 100%

1 2 4 8 16

NCCL-2.6

Number of GPUs

B MVAPICH2-GDR-2.3.3

C.-H. Chu, P. Kousha, A. Awan, K. S. Khorassani, H. Subramoni and D. K. Panda, "NV-Group: Link-Efficient Reductions for Distributed Deep Learning on Modern Dense GPU

Systems, " 1CS-2020.
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Distributed TensorFlow on ORNL Summit (1,536 GPUs)

e ResNet-50 Training using
TensorFlow benchmark on

. 450
SUMMIT -- 1536 Volta '§ 400 ImageNet-1k has 1.2 million images
GPUs! 2 150
i
T " 00 MVAPICH2-GDR reaching ~0.42 million
O
e 1,281,167 (1.2 mil.) images $ 250 images per second for ImageNet-1k!
% 200
&
e Time/epoch = 3 seconds £ 10
100
50 I I
e Total Time (90 epochs) 0 e e o »m 'R
=3 x90=270seconds =4.5 1 2 4 6 12 24 48 96 192 384 768 1536

minutes! Number of GPUs

NCCL-2.6 ® MVAPICH2-GDR 2.3.4

*We observed issues for NCCL2 beyond 384 GPUs
Platform: The Summit Supercomputer (#2 on Top500.0org) — 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1




Scaling PyTorch on ORNL Summit using MVAPICH2-GDR

e ResNet-50 training using PyTorch

+ Horovod on Summit

— Synthetic ImageNet dataset
— Up to 256 nodes, 1536 GPUs

e MVAPICH2-GDR can outperform
NCCL2
— Up to 30% higher throughput

e CUDA 10.1 cuDNN 7.6.5
PyTorchv1.5.0 Horovod v0.19.1

Images/sec (higher is better)

C.-H. Chu, P. Kousha, A. Awan, K. S. Khorassani, H. Subramoni and D. K. Panda,
"NV-Group: Link-Efficient Reductions for Distributed Deep Learning on Modern
Dense GPU Systems, " 1CS-2020, June-July 2020.

Thousands

ol
Ul
o

30% hlgher

6 12 24 48 96 192 384 768 1536

No. of GPUs

NCCL-2.6 B MVAPICH2-GDR-2.3.4

Platform: The Summit Supercomputer (#2 on Top500.0org) — 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1




PyTorch at Scale: Training ResNet-50 on 256 V100 GPUs

e Training performance for 256 V100 GPUs on LLNL Lassen

— ~10,000 Images/sec faster than NCCL training!

Distributed Torch.distributed Horovod DeepSpeed
Framework
Images/sec on 61,794 72,120 74,063 84,659 80,217 88,873
256 GPUs
Communication NCCL MVAPICH2-GDR NCCL MVAPICH2-GDR NCCL MVAPICH2-GDR
Backend

Network Based Computing Laborator




Distributed TensorFlow on TACC Frontera (2,048 CPU nodes)

e Scaled TensorFlow to 2,048 nodes on
Frontera using MVAPICH2 and IntelMPI

262144 ——
65536 e
o , 16384 o
e MVAPICH2 and IntelMPI give similar 9 2006 o
performance for DNN training f‘%’ 1024 o
S 256
E 64
e Report a peak of 260,000 images/sec on 16
4
2,048 nodes .
1 2 4 8 16 32 64 128 256 512 10242048
_ Nodes
e On 2,048 nodes, ResNet-50 can be trained
——MVAPICH2-X deal

in 7 minutes!

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep
Learning on Frontera”, DLS 19 (SC '19 Workshop).
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Solutions and Case Studies: Exploiting HPC for DL

e Data Parallelism

— Baidu-allreduce Deep Learning and Machine Learning Frameworks
— NVIDIA NCCL/NCCL2 Caffe/
] ) CNTK Caffe2 TensorFlow MXNet
— Co-design MPI runtimes and DL OSU-Caffe
Frameworks \\:...................................................: ,l
.\ Major Computation and Communication Phases in DL Frameworks : //
— Distributed Training for 2N a— " v
° N\ Model Propagation orwar Gra |en.t /'o
TensorFlow o \ Backward Aggregation o
L J
. . . -Design
e Model and Hybrid Parallelism . @ h . OCo esign
GPi . Communication Runtimes (MPI/NCCL/Gloo/MLSL) pportunities
- ipe ® °
P . o Large-message Collectives :
— FlexFlow . ‘:)m to- CUDA- [ Hierarchical Reduce (HR) } :
° oin °
— HyPar-Flow . ‘ Operations Awareness [ necubeasymPl_Beast | .
- GEMS ¥ ¥
— SUPER
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GPipe: Pipeline Parallelism

e GPipe allows training of very

Device 3

large models

Device 2

e Split the model across layers

e Trained AmoebaNet with 600
million parameters

Device 1

Device 0

e AmoebaNet cannot be trained
on a single GPU or TPU

e 2.7x speedup on 8 GPUs
— Why?

GPipe: https://arxiv.org/pdf/1811.06965.pdf

Loss

7 T~ _ F .

) - B, F. _ ' B.
_t ¥ F
Fz - Bz
I !
F1 Bi
- !

L]

Fo
\ /
Gradients
(a) (c)

Table 3: Normalized training throughput using
GPipe on GPUs without high-speed interconnect.

GPU AmoebaNet

K= 2 4 8 2 4 8
M=32 1 17 27 1 18 33

Transformer

ISC 21
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https://arxiv.org/pdf/1811.06965.pdf

Solutions and Case Studies: Exploiting HPC for DL

e Data Parallelism

— Baidu-allreduce Deep Learning and Machine Learning Frameworks
— NVIDIA NCCL/NCCL2 Caffe/
CNTK Caffe2 FlexFlow MXNet
— Co-design MPI runtimes and DL [ ] [ OSU-Caffe ] [ ] [ ] [ J
Frameworks \\:...................................................: ,l
.\ Major Computation and Communication Phases in DL Frameworks : //
— Distributed Training for o : v
° . \\ Model Propagation AITE SN /'o
TensorFlow . \ Backward Aggregation o
. . . Co-Design
e Model and Hybrid Parallelism . @ h . o gn
GPi . Communication Runtimes (MPI/Legion/NCCL/Gloo/MLSL pportunities
- pe C °
P . o Large-message Collectives :
— FlexFlow . ‘:)m to- CUDA- [ Hierarchical Reduce (HR) } :
° oin o
— HyPar-Flow . ‘ Operations Awareness [ necubeasymPl_Beast | .
- GEMS ¥ ¥
— SUPER
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FlexFlow: Beyond Data and Model Parallelism

e FlexFlow: identify more dimensions of " Operator Graph ) (_ Device Topology )
parallelism in DNNs o |
o m ol CPU
e Develop strategies and graphs for parallel
L. Cony | seu | | seu || || spu | | sev |
training \_ = VAN = )
: . S B EE— h
e Search algorithms for finding the best L Execution Optimizer ]
. I
: : I Simulated
parallelization strategy | [ veve ) pertormance (g J |
e Uses Legion tasks for distributed training | Search e J2 Canidate Simulator |
= |
on GPUs : l:E Best Found Strategy |
I
I
I [ Distributed Runtime ] }
i\ ________________________ .-.,p‘

Courtesy: https://arxiv.org/pdf/1807.05358.pdf

Figure 2: FlexFlow overview.



https://arxiv.org/pdf/1807.05358.pdf

FlexFlow: Performance Benefits

[
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65,8

e FlexFlow: identify more

(=]
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26

]
L
g—_ =
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=]
{=]
e
o
Y]
a
o
-

dimensions of parallelism in DNNs

]
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L)
s

-
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e Develop strategies and graphs for

wn

=
Per Iteration (seconds)

(=3 - Bad L e
=]

=

=
Total Task Computation Tirme

Per-iteration Execution Time
wn

=4
L

12.1

=
[~
(¥

parallel training

0.0

Total Data Transfers Per Iteration (GB)

. . . pargﬁéﬂsm Dg:f;n’:d FleoFlow "“Data  Expert  FlexFlow ““Data  Expert FlexFlow
e Search algorithms for finding the Persietsm Destanes rarslelim Designed
. . (a) Per-iteration (b) Overall data trans- (c) Overall task compu-
best parallelization strategy execution time. fers per iteration. tation time per iteration.

Figure 8: Parallelization performance for the NMT model
on 64 K80 GPUs (16 nodes). FlexFlow reduces per-
training on GPUs iteration execution time by 1.7-2.4 x and data transfers by
2-5.5 x compared to other approaches. FlexFlow achieves
similar overall task computation time as expert-designed
strategy, which 1s 20% fewer than data parallelism.

e Uses Legion tasks for distributed

Courtesy: https://arxiv.org/pdf/1807.05358.pdf
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Solutions and Case Studies: Exploiting HPC for DL

e Data Parallelism

— Baidu-allreduce Deep Learning and Machine Learning Frameworks
— NVIDIA NCCL/NCCL2 Caffe/
, , CNTK Caffe2 TensorFlow MXNet
— Co-design MPI runtimes and DL OSU-Caffe
Frameworks \\:...................................................: ,l
.\ Major Computation and Communication Phases in DL Frameworks : //
— Distributed Training for . : N
° . \\ Model Propagation AITE SN /'o
TensorFlow : \ Backward Aggregation °
. . . Co-Design
e Model and Hybrid Parallelism . @ h h o &n
GPi . Communication Runtimes (MPI/NCCL/Gloo/MLSL) pportunities
- pe C °
g . o Large-message Collectives .
— FlexFlow . ‘:)m to- CUDA- [ Hierarchical Reduce (HR) } :
° oin °
— HyPar-Flow . ‘ Operations Awareness [ wecL-Beast/MPI_Beast | :
- GEMS L 2 L 2
— SUPER

InfiniBand
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HyPar-Flow: Hybrid Parallelism for TensorFlow

* Why Hybrid parallelism? % 4% Memory Consumption (Extrapolated) =~~~ =
— Data Parallel training has 512 _ _ _
o Only possible with Model Parallelism!
limits! 2 256
e We propose HyPar-Flow 128 ® - 3
_ : 64 '
An easy to use Hybric 8 ,, (CPUBroadwell(128GB) o _
parallel training framework z N " Volta GPU .
e Hybrid = Data + Model 2 . CPU Skylake
S ts K dels and 8 {eses)
— Supports Keras models an
PP 4 Pascal GPU ' '
exploits TF 2.0 Eager > le ®
Execution L A S
— Exploits MPI for Point-to- 0 10 200 300 400 500 €00 700 800
i ) Input Image Size (Width X Height)
point and Collectives ® ResNet-1k & ResNet-5k

Benchmarking large-models lead to better insights and ability to develop new approaches!

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, “HyPar-Flow: Exploiting MPI and Keras for Hybrid
Parallel Training of TensorFlow models”, ISC 20, https://arxiv.org/pdf/1911.05146.pdf

Network Based Computing Laborator ISC 21


https://arxiv.org/pdf/1911.05146.pdf
https://arxiv.org/pdf/1911.05146.pdf

Model/Hybrid Parallelism and MPI Collectives

e HyPar-Flow is practical (easy-to-use) and high-performance (uses MPI)
— Based on Keras models and exploits TF 2.0 Eager Execution

— Leverages MPI Pt-to-pt. and Collectives for communication

DNN with Identity {Residual) Mappings (Input)

hf.fit (model, num partitions,
num replicas, strategy)

E.g. hf.fit(model, 3, 2, hybrid)

{ HyPar-Flow J_

/

4 Allreduce \ fAlIreduce \ fAIIreduce\
comm comm comm | recv (D)
@Ise"d(V)
Replica-0 - T -t Qe ! - -
. Il
—————— e e e e e ] e s s e / \."_‘::.,}_ o M recv(D
| i 1 g _ ] - recv{V) o~ send{V)
H : - V )«
Replica-1 | % ¥ b o \ \i/
] . I Conv3 Convd | | Output
; mageN Convl Conv2 : FC

- AN AN /j\ Fartition-0 ' Partition-1 Partition-2 /
A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, “HyPar-Flow:

Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models”, ISC’20,
https://arxiv.org/pdf/1911.05146.pdf

ISC 21


https://arxiv.org/pdf/1911.05146.pdf
https://arxiv.org/pdf/1911.05146.pdf

Benefits of Model/Hybrid Parallel Training: Using HyPar-Flow

e HyPar-Flow*: Hybrid Parallel

training of TensorFlow models o o o e oo | EBS = Diameter of Circle
e Exploit MPI for communication -
and Keras for model 7
definitions i 500
e Hybrid=> combination of E .
Model and Data parallelism “‘g 400
e Speedup over one node: 110x 200 %
on 128 nodes ° ° ? ? N N o nn e

e EBS = Effective batch size

A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, “HyPar-Flow: Exploiting MPI and Keras for Hybrid
Parallel Training of TensorFlow models”, ISC ‘20, https://arxiv.org/pdf/1911.05146.pdf
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HyPar-Flow at Scale (512 nodes on TACC Frontera)

e ResNet-1001 with variable batch
481x speedup on 512 Intel Xeon Cascade Lake nodes (TACC Frontera)

size 5000
4500
e Approach: 5 4000
— 48 model-partitions for 56 cores & 3500
_ 23000
— 512 model-replicas for 512 nodes % 2500 “
— Total cores: 56 x 512 = 28,672 :CJ 2000 ad
g 1500
* Speedup £ 1000 /J
— 253X on 256 nodes 500 P
0 ¢ & —o——% 7
— 481X on 512 nodes 1 2 4 8 16 32 64 128 256 512
e Scaling Efficiency Nodes {=Replicas)
— 98% up to 256 nodes —e—56 Partitions (1 node) Ideal
— 93.9% for 512 nodes A. A. Awan, A. Jain, Q. Anthony, H. Subramoni, and DK Panda, “HyPar-Flow: Exploiting MPI and Keras for Hybrid

Parallel Training of TensorFlow models”, ISC ‘20, https://arxiv.org/pdf/1911.05146.pdf
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Solutions and Case Studies: Exploiting HPC for DL

e Data Parallelism

— Baidu-allreduce Deep Learning and Machine Learning Frameworks
— NVIDIA NCCL/NCCL2 Caffe/
, , CNTK Caffe2 TensorFlow MXNet
— Co-design MPI runtimes and DL OSU-Caffe
Frameworks \\:...................................................: ,l
.\ Major Computation and Communication Phases in DL Frameworks : //
— Distributed Training for . : N
° . \\ Model Propagation AITE SN /'o
TensorFlow : \ Backward Aggregation °
. - . Co-Design
e Model and Hybrid Parallelism . @ h h o &n
GPi . Communication Runtimes (MPI/NCCL/Gloo/MLSL) pportunities
- pe C °
g . o Large-message Collectives .
— FlexFlow . ‘:)m to- CUDA- [ Hierarchical Reduce (HR) } :
° oin °
— HyPar-Flow . ‘ Operations Awareness [ NecLgeast/mp Beast | :
—~ GEMS . 2 ¥
— SUPER
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GEMS: GPU Enabled Memory Aware Model Parallelism Systems

Why do we need Memory aware

designs? / Model Parallelism-Basic (MP-Basic) \
Data and Model Parallel A Model Model

B ‘J Replica 1 Output %‘;3 Replica 1 Output
.. SIS
training has limitation! Memory footprint Motivat
1. Free Memory
l 2. Compute available
: : Fp — BP——— BP—————
— Maximum Batch Size ‘ pa | P4 b4
~ i
depends on the memory. B P3", 7 P3 -
5 \\ J”
é P2 P2~ /P2 P2
=1 RS s
— Basic Model Parallelism %‘ o1 P Pt P1
Q
suffers from i

Time J

Memory requirement increases with the increase in image size!

underutilization of memory

and compute =2

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. Panda, R. Machiraju, A. Parwani, “GEMS: GPU Enabled Memory Aware Model Parallelism System for
Distributed DNN”, SC ‘20
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GEMS at Scale (1,024 V100 GPUs on LLNL Lassen)

e We propose memory aware designs
97.32% scaling efficiency on 1024 V100 GPUs (LLNL Lassen)

to accelerate the training of DNN on

64 -
° Approaches: = 37 _ [0 GEMS-HY MAST
o &
, L » £ 16 -| EGEMS-HY MASTER
— Memory Aware Synchronized Training g2 g
Q wu
n oo 4
— Memory Aware Synchronized Training £Ex
with Enhanced Replications (MASTER) 002'2
e Setup 8 16 32 64 128 256 512 1024

Number of GPUs
— ResNet-1k on 512 X 512 images

— 128 Replications on 1024 GPUs

e Scaling Efficiency

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. Panda, R.
Machiraju, A. Parwani, “GEMS: GPU Enabled Memory Aware Model Parallelism System

— 97.32% on 1024 nodes for Distributed DNN”, SC ‘20




Exploiting Model Parallelism in Al-Driven Digital Pathology

WSI - 40x mag - 2.5 billion pixels - 1° million nuclei

e Pathology whole slide image (WSI)
— Each WSI = 100,000 x 100,000 pixels
— Can not fit in a single GPU memory

— Tiles are extracted to make training possible

L
. . . )
e Two main problems with tiles X
— Restricted tile size because of GPU memory limitation §
— Smaller tiles loose structural information A
A
e Can we use Model Parallelism to train on larger tiles to get
better accuracy and diagnosis?
e Reduced training time significantly
— 32 hours (1 node, 1 GPU) -> 7.25 hours (1 node, 4 GPUs) -> > 50,000 pixels
. Courtesy: https://blog.kitware.com/digital-slide-
27 mins (32 nodes, 128 GPUs) archive-large-image-and-histomicstk-open-source-
informatics-tools-for-management-visualization-and-

analysis-of-digital-histopathology-data/

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. Panda, R. Machiraju, A. Parwani, “GEMS:
GPU Enabled Memory Aware Model Parallelism System for Distributed DNN”, SC ‘20
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Solutions and Case Studies: Exploiting HPC for DL

e Data Parallelism

— Baidu-allreduce Deep Learning and Machine Learning Frameworks
— NVIDIA NCCL/NCCL2 Caffe/
. ) CNTK LBANN TensorFlow MXNet
— Co-design MPI runtimes and DL OSU-Caffe
\ .................................................... >
Frameworks \: : /J
N Major Computation and Communication Phases in DL Frameworks : //
— Distributed Training for o . v
° . \\ Model Propagation AITE SN /'o
TensorFlow : \ Backward Aggregation °
. - . Co-Design
e Model and Hybrid Parallelism . @ h h o &n
GPi . Communication Runtimes (MPI/NCCL/Cloo/MLSL) pportunities
- pe - °
g . Large-message Collectives .
— FlexFlow . Collective CUDA- [ Hierarchical Reduce (HR) ] S
— HyPar-Flow « | Operations Awareness ( NCCL-Bcast/MP|_Bcast } E
g g g
— SUPER
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SUPER: SUb-Graph Parallelism for TransformERs

Sub-Graph Parallelism

— Exploits inherent parallelism in

[Layer 2] [Layer 3] [Layer 4] [Layer 5] [Layer 6] [Layer 7] [Layer 8] [Layer 9]

modern DNN architectures

— Improves the Performance of
multi-branch DNN architectures -

Simple example of a multi-branch DNN architecture

NS: Number of Samples per GPU

training of state-of-the-art (- -\/_m\/ - | o

— Can be used to accelerate the

I.\IIS:?)-Z[Layveer] [Laygr 5] [L_éyver_G] [_Léygr 7]N5:§2_[—La\/-'ér-s]_-[_l;_éyer 9] NS: 32

Transformer models

v Ger 2 [aver )

\ GPU 1 /\ GPU 2 /\ GPU3 /K GPU 4 /

4-way Sub-Graph Parallelism combined with Data-Parallelism (D&SP)

— Provides better than Data-

Parallelism for in-core models

A. Jain, T. moon, T. Benson, H. Subramoni, S. Jacobs, D. Panda, B. Essen, “SUPER: SUb-Graph Parallelism for TransformERs”, IPDPS '21
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Accelerating Transformers using SUPER

e We propose sub-graph parallelism
integrated with data parallelism to
accelerate the training of
Transformers.

e Approach
— Data and Sub-Graph Parallelism (D&SP)
e #-way D&SP (#: number of sub-graphs)
e Setup
— T5-Large-Mod on WMT Dataset
— 1024 NVIDIA V100 GPUs

e Speedup
— Up to 3.05X over Data Parallelism (DP)

Up to 3.05X speedup over Data Parallel designs (LLNL Lassen)

Time per mini-batch (secs)

1.6
1.4
1.2

0.8
0.6
0.4
0.2

--DP ~0-2-way D&SP
=>¢=4-way D&SP 8-way D&SP
g——— _ s —8—=—=

4 8 16 32 64 128
#GPUs

256 512 1024

A. Jain, T. moon, T. Benson, H. Subramoni, S. Jacobs, D. Panda, B. Essen, “SUPER: SUb-Graph Parallelism for TransformERs”, IPDPS '21
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Open Issues and Challenges

e Convergence of DL and HPC
e Scalability and Large batch-size training?
e DL Benchmarks and Thoughts on Standardization

e Open Exchange and Making Al accessible?

Network Based Computing Laborator




Convergence of DL and HPC

e |s Deep Learning an HPC Problem?
— Distributed DNN Training is definitely an HPC problem

— Inference — not yet an HPC problem

e Why HPC can help?

— Decades of research for communication models and performance optimizations

— MPI, PGAS, and other upcoming programming models and communication runtimes can
help for “data-parallel” training

e Some of the needs for DNN training are an exact match

— Compute intensive problem

e Some needs are new for distributed/parallel communication runtimes

— Large Message Communication

— CUDA-Aware Communication

Network Based Computing Laborator



Scalability and Large batch-size training?

e Large batch-size helps improve the scalability
— Lesser communication and more compute before synchronization

— Limits to large batch-size
e DL community is actively exploring this area

e HPC community can also investigate overlap and latency-hiding techniques

e |sthere alimitto DNN size?

— Noam Shazeer’s Outrageously Large Model (137 Billion Parameters)

— https://arxiv.org/pdf/1701.06538.pdf

e Qut-of-core Training for GPUs?
— NVIDIA’s vDNN - https://arxiv.org/pdf/1602.08124.pdf

— Prune the network or selectively allocate/de-allocate memory on GPUs

— OC-DNN and OC-Caffe

Network Based Computing Laborator
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Scalability and Large (Out-of-core) Models?

e Out-of-core

e Large DNNs cannot be trained on GPUs due to memory limitation! P100 GPU Memory Limit (16 GB). Training
4500 :
— ResNet-50 for Image Recognition but current frameworks can 4000 : 'g
, 3500 | S AlexNet E GoogleNet BIVGG! —
only go up to a small batch size of 45 g s0m mer Thoostete : =
— Next generation models like Neural Machine Translation (NMT) %zzz ; 2048 =
are ridiculously large, consists of billions of parameters, and @ 1500 o % §1m
1000 = P = =
require even more memory oo | m %mm %"‘ﬁﬁoé ém . % Eg
— Can we design Out-of-core DNN training support using new ’ 'i'ra;na-l)ility(MemoryRequirements)
software features in CUDA 8/9 and hardware mechanisms in 20
PascaI/VoIta GPUS? E N
_ o _ " . ., o 15 “IE oc-caffe-opt is
e General intuition is that managed allocations “will be” slow! - = 80% better than
o === jntel-caffe
— The proposed framework called OC-Caffe (Out-of-Core Caffe) 5 0 caffegpu o
Lz cannot I intel-
shows the potential of managed memory designs that can g ¢ run 5@5@5@5@5 caffe-opt
provide performance with negligible/no overhead. g y i ‘N)/(A’
o g 0 e N
e OC-Caffe-Opt: up to 80% better than Intel-optimized CPU Caffe for - .
m caffe-gpu [l oc-caffe-naive E oc-caffe-opt
ResNet-50 training on the Volta V100 GPU with CUDA9 and CUDNN7 m caffe-cpu intel-caffe intel-caffe-opt

A. A. Awan, C.-H. Chu, H. Subramoni, X. Lu, and D. K. Panda, OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training, HiPC '18
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DL Benchmarks and Thoughts on Standardization

e Can we have a standardized interface?
— Are we there yet?

— Deep Learning Interface (DLI)? Inspired by Message Passing Interface (MPI)

e What can be a good starting point?
e Will it come from the HPC community or the DL community?

e Can there be a collaboration across communities?

e \What about standard benchmarks? Is there a need?

— State-of-the-art
e HKBU benchmarks - http://dlbench.comp.hkbu.edu.hk

e Soumith Chintala’s benchmarks - https://github.com/soumith/convnet-benchmarks

e DAWN Bench — https://dawn.cs.stanford.edu/benchmark/

e MLPerf — https://www.mlperf.org -- Latest and Widely Promoted now!
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Open Exchange and Making Al accessible?

e OpenAl —a company focused towards making Al accessible and open
— Backed up by several industry partners and individuals
e Amazon, Microsoft, Infosys, Elon Musk, Peter Thiel, and others..

— Latest News: Microsoft will invest S1 Billion in OpenAl R&D

—  https://www.hpcwire.com/2019/07/22/microsoft-investing-1b-in-openai-artificial-general-intelligence-rd/

e ONNX format

— An open format to exchange trained models
— Cross-framework compatibility

— Created by Facebook and Microsoft

— TensorFlow and CoreML (Apple) are also supported (Convertor only)



https://www.hpcwire.com/2019/07/22/microsoft-investing-1b-in-openai-artificial-general-intelligence-rd/
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Getting Set-up for the Hands-on Exercises

e You will run the experiments on the OSU RI2 cluster

e Please use the account name and password from http://go.osu.edu/dltutorial

e E.g.sshri2tut01@ri2.cse.ohio-state.edu and tutorialO1 as password

e Once on the shell, go to /opt/tutorials/dl-tutorial-21/labs (copy/paste the
following line)

cd /opt/tutorials/dI-tutorial-21/labs
There are two folders for exercises (lab 1 and lab2) and one for homework (hw)

e Take a look at the README.md file for all scripts

— copy/paste the run commands from README.md and not the slide deck



http://go.osu.edu/dltutorial
mailto:ri2tut01@ri2.cse.ohio-state.edu

Labl - Overview

e QObjectives
— How to train a PyTorch model on a single NVIDIA GPU?
— How to perform distributed training of a PyTorch model on multiple GPUs using InfiniBand
and NVIDIA GPUs?
e Tasks
— Run PyTorch on a Single GPU
— Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2)
— Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2-GDR)
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Distributed Training with PyTorch using Horovod

e Examples to run data-parallel training with PyTorch using Horovod

e Available from: https://github.com/horovod/horovod/tree/master/examples

e To run ResNet50 with synthetic data with a single GPU, run

python pytorch_synthetic_benchmark.py \
--batch_size=32\

-———-num-iters=10\



https://github.com/horovod/horovod/tree/master/examples

Lab1l-Taskl: Run PyTorch on a single GPU

$ cd /opt/tutorials/dl-tutorial-21/labs/labl
$ srun -N 1 --reservation=dltutorial run pytorch bench single.sh

+ /opt/tutorials/dI-tutorial-21/miniconda3/envs/pytorch_mv2/bin/python /opt/tutorials/dl-tutorial-
21/horovod/examples/pytorch/pytorch synthetic_benchmark.py --batch-size 64 --num-iters=5

Model: resnet50 V100

Batch size: 64

Number of GPUs: 1

Running warmup. ..

Running benchmark. ..

Iter #0: 333.9 img/sec per GPU
Iter #1: 334.2 img/sec per GPU
Iter #2: 333.9 img/sec per GPU
Iter #3: 333.8 img/sec per GPU
Iter #4: 333.9 img/sec per GPU
Img/sec per GPU: 334.0 +-0.2
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Lab1-Task2: Run PyTorch on two nodes with 1 GPU/node
(using MVAPICH2)

$ srun -N 2 --reservation=dltutorial run pytorch bench multi mv2.sh

+ /opt/tutorials/dI-tutorial-21/mv2/bin/mpirun_rsh -np 2 gpull gpul2 MV2_USE_CUDA=1
MV2_CPU_BINDING_POLICY=hybrid MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0
Jopt/tutorials/dlI-tutorial-21/miniconda3/envs/pytorch_mv2/bin/python /opt/tutorials/dl-tutorial-
21/horovod/examples/pytorch/pytorch synthetic_benchmark.py --batch-size 64 --num-iters=5

Model: resnet50 V100

Batch size: 64
Number of GPUs: 2
Running warmup. ..
Running benchmark. ..
Iter #0: 247.
Iter #1: 254.
Iter #2: 255.
Iter #3: 261.9 img/sec per GPU
Iter #4: 261.0 img/sec per GPU
Img/sec per GPU: 256.1 +-10.3

img/sec per GPU
img/sec per GPU
img/sec per GPU

©O© 00 o »

Total img/sec on 2 GPU(s): 512.3 +-20.6
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Lab1-Task3: Run PyTorch on two nodes with 1 GPU/node
(using MVAPICH2-GDR)

$ srun -N 2 --reservation=dltutorial run pytorch bench multi mv2gdr.sh

+ /opt/tutorials/dl-tutorial-21/mv2-gdr/bin/mpirun_rsh -np 2 gpull gpul2 MV2_USE_CUDA=1 MV2_CPU_BINDING_POLICY=hybrid
MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0

MV2_GPUDIRECT _GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so LD_PRELOAD=/opt/tutorials/dI-tutorial-21/mv2-
gdr/lib/libmpi.so /opt/tutorials/dl-tutorial-21/miniconda3/envs/pytorch_gdr/bin/python /opt/tutorials/dl-tutorial-
21/horovod/examples/pytorch/pytorch _synthetic_benchmark.py --batch-size 64 --num-iters=5

Model: resnet50 V100

Batch size: 64
Number of GPUs: 2
Running warmup. ..
Running benchmark. ..
Iter #0: 317.
Iter #1: 314.
Iter #2: 315.
Iter #3: 318.0 img/sec per GPU
Iter #4: 316.7 img/sec per GPU
Img/sec per GPU: 316.4 +-2.2

img/sec per GPU
img/sec per GPU
img/sec per GPU

o &~ OV O

_________________________________________ ~1.89X on
2 GPUs
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Lab2 - Overview

e QObjectives
— How to train a TensorFlow model on a single NVIDIA GPU?

— How to perform distributed training of a TensorFlow model on multiple GPUs using
InfiniBand and NVIDIA GPUs?

e Tasks

— Run TensorFlow on a Single GPU

— Run TensorFlow on two nodes with 1 GPU/node (using MVAPICH2-GDR)




Distributed Training with TensorFlow using Horovod

e Examples to run data-parallel training with TensorFlow using Horovod

e Available from: https://github.com/horovod/horovod/tree/master/examples

e To run ResNet50 with synthetic data with a single GPU, run

python tensorflow2_synthetic_benchmark.py\
--batch_size=32\

-———-num-iters=10\



https://github.com/horovod/horovod/tree/master/examples

Lab2-Task1l: Run TensorFlow on a Single GPU

$ cd /opt/tutorials/dl-tutorial-21/labs/lab2
S srun -N 1 --reservation=dltutorial run tf bench single.sh

+ /opt/tutorials/dl-tutorial-21/miniconda3/envs/tf_mv2_gdr/bin/python  /opt/tutorials/dl-tutorial-
21/horovod/examples/tensorflow2//tensorflow2_synthetic_benchmark.py —batch-size 64

Model: ResNet50
Batch size: 64
Number of GPUs: 1
Running warmup. ..
Running benchmark. ..
Iter #0: 3309.
Iter #1: 337.
Iter #2: 337.
Iter #3: 337.8 img/sec per GPU
Iter #4: 337.8 img/sec per GPU
Img/sec per GPU: 338.2 +-1.4

img/sec per GPU
img/sec per GPU
img/sec per GPU

o 0 VW O
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Lab2-Task2: Run TensorFlow on two nodes with 1 GPU/node
(using MVAPICH2-GDR)

$ srun -N 2 --reservation=dltutorial run tf bench multi mv2gdr.sh

+ /opt/tutorials/dI-tutorial-21/mv2-gdr/bin/mpirun_rsh -np 2 gpull gpul2 MV2_USE_CUDA=1 MV2_SUPPORT DL=1
MV2_CPU_BINDING_POLICY=hybrid MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0
Jopt/tutorials/dI-tutorial-21/miniconda3/envs/tf _mv2_gdr/bin/python /opt/tutorials/dl-tutorial-
21/horovod/examples/tensorflow2/tensorflow2 synthetic_benchmark.py --batch-size 64 --num-iters=5.

Model: ResNet50

Batch size: 64
Number of GPUs: 2

Running warmup. ..

Running benchmark. ..

Iter #0: 310.
Iter #1: 314.
Iter #2: 312.
Iter #3: 313.8 img/sec per GPU

Iter #4: 314.5 img/sec per GPU
Img/sec per GPU: 313.2 +-2.7

img/sec per GPU
img/sec per GPU
img/sec per GPU

0o J B 0

1.85X on
2 GPUs
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Hands-on Exercises: Key Takeaways

e Deep Learning models can be trained in multiple ways

— Examples to run data-parallel training with Horovod are available at
“https://github.com/horovod/horovod/tree/master/examples”

— Single/Multiple GPU jobs -- similar

— Horovod can be configured MPI, GLOO, NCCL, and oneCCL.

— MVAPICH2-GDR offers near-linear speedup for multi-node training
— MVAPICH2-GDR with CUDA-aware design delivers better

performance

— TensorFlow gives slightly better performance than PyTorch for
ResNet50.
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Homework - Overview

e QObjectives
— End-to-end training performance
— How to train a deep learning model for MNIST dataset on a single NVIDIA GPU?
— How to perform distributed training for MNIST dataset on multiple GPUs using InfiniBand
and NVIDIA GPUs?
e Tasks

— Train a deep learning model for MNIST on a Single GPU

— Train a deep learning model for MNIST on two nodes with 1 GPU/node (using MVAPICH2-
GDR)

Network Based Computing Laborator



Training Deep Learning model for MNIST

e Examples to run data-parallel training with PyTorch using Horovod

e Available from: https://github.com/horovod/horovod/tree/master/examples

e To train DNN for MNIST on a single GPU, run

python pytorch_mnist.py\
--batch_size=64



https://github.com/horovod/horovod/tree/master/examples

HW: Train a DL model for MNIST Dataset

$ cd /opt/tutorials/dl-tutorial-21/labs/hw

S time srun -N 1 --reservation=dltutorial
run pytorch mnist single.sh

Test set: Average loss: 0.0553, Accuracy: 98.30%
real 5m56.449s

user Om0.008s
sys O0m0.011s

S time srun -N 2 --reservation=dltutorial
run pytorch mnist multi mv2gdr.sh

Test set: Average loss: 0.0537, Accuracy: 98.33%

real 1m43.860s
user Om0.007s
sys O0m0.013s
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Conclusion

e Exponential growth in Deep Learning frameworks

e Provided an overview of issues, challenges, and opportunities for

communication runtimes

— Efficient, scalable, and hierarchical designs are crucial for DL frameworks
— Co-design of communication runtimes and DL frameworks will be essential

e OSU-Caffe
e TensorFlow (Baidu, Uber’s Horovod, etc.)

e Neon and Nervana Graph

e Need collaborative efforts to achieve the full potential

e Standardization may help remove fragmentation in DL frameworks
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Thank You!

panda@cse.ohio-state.edu, subramon@cse.ohio-state.edu, jain.575@osu.edu
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