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• Data-driven Weather Prediction

• Adaptive Fourier Neural Operator

• From Weather Prediction to Climate Science: 
Fourier Neural Operators on the Sphere

• Outlook

Outline



HPC-intensive: European Center for Medium Range Weather Forecasting

Traditional Deterministic Numerical Weather Prediction (NWP)
Solving equations of motion for incompressible fluid on a rotating sphere + lots of tricks

• Numerical models and heuristics developed over decades, requiring lot of domain expertise to implement new features/physics

• Producing long prediction rollouts/large ensembles is computationally demanding



Massive Ensembles required to capture Low Likelihood/High Impact Extremes
Multiple atmospheric rivers landing in California Dec-Jan 2023

Capture the exponentially suppressed tail: huge ensemble and thus fast sampling needed!

https://doi.org/10.1073/pnas.2207536119

https://doi.org/10.1073/pnas.2207536119


• Very similar to time series image prediction task 
(e.g., in movies, video games)

• Instead of RGB channels we use physical fields 
(temperatures, winds, pressures…)

• # training samples scales with temporal resolution and length of recording

• Can be stood up by small teams within tech companies (lot of engagement 
from a broader community with great results, 
e.g. Pangu-Weather, Graphcast, FuXi)

• Does not require in-depth domain science knowledge 
to modify model or parameters

• Is producing skill gains rapidly

• Producing long prediction rollouts and large ensembles is cheap

Data-driven Weather Prediction, what's different?
Training transformers to predict the next few weeks temperatures, winds, surface pressure with data.

https://arxiv.org/abs/2211.02556
https://arxiv.org/abs/2212.12794
https://arxiv.org/abs/2306.12873


Data-driven Weather Prediction in a Nutshell

• Model fully learned from data (could be augmented with physics inputs)

• Incorporating new features is straightforward

• Requires expertise in training DL models, training is expensive

• Inferred predictions are inexpensive

• Relies on high quality ground truth data
(e.g. from simulations, reanalyzes, observations, etc.)

state at time t

ground truth at time t + dt

Deep Neural Network

predicted state at time t + dt

loss



Adaptive Fourier Neural Operator

• Tokenization (patch embedding) of input data to reduce spatial 
complexity and memory footprint

• Learnable positional encoding

• Transformer Block (12x):

• Inter-token mixing using 2D Fast Fourier Transforms 
(large scale features)

• Intra-token mixing using fully connected layers 
(small scale features)

• Normalization of spatial features

• Predictions performed on full resolution input grid

• Publication: arxiv.org/abs/2202.11214

• Available on ECMWF-lab: 
github.com/ecmwf-lab/ai-models-fourcastnet

• NVIDIA Modulus implementation available

Bringing ViT and FNO together

PASC ’23, June 26–28, 2023, Davos, Switzerland Kurth et al.
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Figure 1: Comparison of performance metrics (ACC: Anomaly Cor-
relation Coe�cient and RMSE: Root Mean Squared Error) between
downsampled FourCastNet predictions, downsampled IFS, and base-
line DL weather prediction (DLWP) model [30] for /500, geopotential
height at 500 hPa, a determinant of global weather patterns. Four-
CastNet signi�cantly outperforms DLWP and predicts at 8X higher
resolution.

node-seconds for FourCastNet with parameters as described in Sec-
tion 4. By comparison, the IFS L91 18 km model requires 984,000
node-seconds for a 100-member ensemble forecast [6]. Thus, Four-
CastNet generates forecasts that are 80,000 times faster than the IFS
on a node-seconds basis. Considering the power consumption of
the respective chips used in the IFS and FourCastNet forecasts, as
well as the speed of forecasting, it is estimated in Ref. [22] that the
IFS ensemble forecast consumes 2.71⇥ 108 J, whereas the FourCast-
Net ensemble forecast consumes 2.98 ⇥ 104 J. Thus, FourCastNet
is 10,000 times more energy e�cient than the IFS. Finally, once
trained, FourCastNet requires only a single GPU node to generate
ensemble forecasts in contrast to more than 1,000 nodes required
by the IFS.

4 INNOVATIONS
4.1 Model Innovations
The AFNO transformer works as follows. The input frame

∞∞∞Ø
- (C)

with spatial resolution ⌘ ⇥ F ⇥ ✓ (⌘ = 720, F = 1440, ✓ = 20)
is �rst divided into a sequence of patches or tokens, each with
? ⇥ ? ⇥ ✓ pixels as shown in Figure 2. Since vision transformers
generally become more powerful with smaller patch sizes, we set
? = 4. This yields a grid of 180⇥360 tokens. Each token is then
embedded in a high dimensional vector (e.g., with 1,024 numerical
entries) which is passed to a series of transformer layers to re�ne
the embedding. Finally, the pixels for frame

∞∞∞Ø
- (C +�C) at time C +�C

are reconstructed from the embedding of the last layer using a
linear decoder. Each transformer layer also applies spatial (token)
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Figure 2: The AFNO architecture showing the key operations per-
formed on the the input tensor with dimensions (20 ⇥ 720 ⇥ 1440) to
produce a 6 hour single time step forecast with the same dimensions.
Model parallelism is implemented by splitting the channels (feature
maps) across GPUs. Channel mixing MLP operations require com-
munication across the model parallel ranks, while the FFT based
spatial-mixing operates on disjoint blocks that are embarrassingly
parallel.

mixing and channel mixing. The channel mixer consists of a single-
layer multi-layer perceptron (MLP). The key component of AFNO
is a carefully designed spatial mixing operation that entails the
following steps:

(1) An FFT spatially mixes the 180⇥360 grid of tokens.
(2) For each individual token, the 1024 channels are mixed using

a block-diagonal MLP in the Fourier space. All 64, 800 tokens
are processed in parallel, where the MLP weights are shared
across tokens.

(3) An inverse FFT demixes the tokens and returns them to the
spatial domain.

4.2 Training and Inference
We train the DL model on the ERA5 reanalysis dataset from the
ECMWF at the native resolution of 0.25° lat-lon on a regular carte-
sian grid. At a given timestep, each variable is represented as a
720⇥1440-pixel �eld.We sub-sample the available dataset to include
the 20 prognostic variables thought to most strongly in�uence near-
surface winds and temperatures. These variables are listed in the
inset of Figure 2. We sub-sample the data at 6-hour intervals from
the set of 1-hour intervals available in ERA5. Denoting the modeled

http://arxiv.org/abs/2202.11214
https://github.com/ecmwf-lab/ai-models-fourcastnet
https://docs.nvidia.com/deeplearning/modulus/modulus-v2209/user_guide/neural_operators/fourcastnet.html


Parallelizing AFNO FourCastNet

• Load balancing friendly: work homogeneous across layers

• Domain parallelism: split up spatial domain, using distributed FFT, 
expensive communication (all-to-all)

• Feature parallelism: embedding dimension (feature dimension of 
patch embedding/tokenization) is usually O(1K): good target for 
feature parallelism (cf. MEGATRON), moderately expensive 
communication (all-reduce/all-gather)

• Data parallelism: straightforward, but leads to significant 
generalization gap at moderate batch sizes (~256), cheap 
communication (all-reduce)

Hybrid Parallelism Required for Fast Training

B x H x W
hidden dim

embedding dim

embedding dim

hidden dim
/#proc

B x H x W

all-gather/
all-reduce



Implementation Overview in a Nutshell
PyTorch supports all necessary tools for parallelism

• Forward and Backward parallelism: torch.autograd.Function

• Gradient reductions modifications: DistributedDataParallel and  
• tensor backward hooks: all weights are shared among all ranks
• comm hooks: full flexibility in implementing more complicated comm structures

• Data Loading: NVIDIA DALI with external source operator. cuPY arrays and pinned host memory for minimizing H2D transfer overhead, 
expensive CPU functions are numba compiled (recent addition)

• CUDA graphs to reduce jitter at scale, especially important with different comm groups in play and communication in the critical path

• Automatic Mixed Precision: FP16 and (recently) BF16

• Other important optimizations: optimizing tensor contractions in spectral space with torch.jit, ensuring generation of efficient CGEMM 
calls, using fused optimizers, using GPU-based LR schedulers, …

https://pytorch.org/docs/stable/autograd.html
https://pytorch.org/docs/stable/generated/torch.Tensor.register_hook.html
https://pytorch.org/docs/stable/ddp_comm_hooks.html
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/examples/general/data_loading/parallel_external_source.html
https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/
https://pytorch.org/docs/stable/amp.html


AFNO Scaling Example

• Domain decomposition works well but only inside the NVLink island

• Hybrid parallelism is important for (strong) scalability

• When mixing with data parallelism, picture might change because of additional overhead of weight grad reductions: 
in practice, fewer parallelization dimensions work better, e.g.: feature + data



AFNO Performance Scalability
MEGATRON-like Fork-Join MLP Parallelization

• Instance size: number of GPU running the same model instance (model parallel dimension size)

• Model parallel scaling close to perf modeling expectations



Fully Data-driven 
Weather Simulation with 
AFNO FourCastNet

• Scope Global, Medium Range

• Model Type Full-Model AI Surrogate

• Architecture AFNO (Adaptive Fourier Neural Op.)

• Resolution: 25km

• Training Data: ERA5 Reanalysis

• Initial Condition GFS / UFS

• Training Time.                    70 min @ 3072 A100

• Inference Time 70 sec @ 4 A100
(100-member, 10-days)

• Speedup vs NWP O(104-105)

• Power Savings vs NWP    O(104)



Significant Skill Improvements in Short Amount of Time
Despite small team of engineers

Skill gap reduced by more than half w.r.t IFS 
gold standard

Skill gap reduced by more than half w.r.t IFS 
gold standard

Acronyms:
ACC: Anomaly Correlation Coefficient (metric of weather skill)
IFS: The Integrated Forecast System
FCN: FourCastNet, our digital twin of weather



FCN has impressive skill on forecasting extremes.
FCN has impressive skill on forecasting extremes

Including (extra-)tropical cyclones and atmospheric rivers



Figure adapted from: Schneider, T., Teixeira, J., Bretherton, C. et al. “Climate goals and computing the future of clouds”. Nature Climate Change 7, 3–5 (2017)
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Switching Scopes: AI-driven Climate Modeling
Realistic climate simulation is a computational grand challenge

100m at 0.1 s, 15 ZB/simyear (500M x compute, 360M x storage)

1 km at 20 s, 823 PB/simyear (30K x compute, 18K x storage)

25 km at 10 min, 45 TB/simyear



-- Bjorn Stevens, GTC 2021

Tethering can solve storage, latency crisis facing high-res
AI nimbly generates details between "checkpoints" saved only infrequently from physics-based climate simulations

Traditional climate simulation trajectory

Tethered trajectory with data-driven ensemble interpolation



The Problem of Polar Instabilities
AFNO is treating spatial domain incorrectly

Correct topology is S2 and not S1xS1 
(autoregressive feedback loop amplifies small errors over rollout steps)



A PyTorch library

• Open-Source library under BSD-3 license:
https://github.com/NVIDIA/torch-harmonics

• Efficient calls for forward and inverse spherical harmonic 
transformations

• Autograd support as differential layers in PyTorch

• Full support for distributed memory computation

https://github.com/NVIDIA/torch-harmonics


SFNO Topology
Fully SO(3) Equivariant Architecture

• Spherical Fourier layers derived from Convolution 
theorem on the Sphere

• Data preprocessing fully SO(3) equivariant

• Positional encoding SO(3) equivariant 

• Instance norm instead of layer norm 
(elementwise affine operation in layer norm 
breaks SO(3) equivariance)

• Space-MLP (pointwise) and Fourier layers 
(Driscoll-Healy) are both SO(3) equivariant

• Full architecture respects SO(3) symmetry



Polar instabilities
Equivariant treatment of spherical geometry overcomes instabilities



Stable rollouts
SFNO rollouts remain stable over a year and generate visually plausible weather patterns

* Stable one-year rollout (1460 autoregressive steps) computed in 13 minutes on a single NVIDIA RTX A6000



Skill compared to IFS
Preliminary Results

• FourCastNet-SFNO demonstrates excellent skill, comparable to IFS for relevant rollouts
• Development not finished, still many directions to explore
• Excellent skill with long rollout stability: candidate for S2S or climate science applications
• arXiv Link: Spherical Neural Operators: Learning Stable Dynamics on the Sphere, accepted for publication at ICML
• For more details: 

Anima Anandkumar (remote): Accelerating Earth System Emulation with Spherical Neural Operators, 
MS4C (Sertig), Tue, June 27, 16:00-16:30

wind @ 10m (eastward) temperature @ 2m geopotential @ 500 hPa temperature @ 850 hPa

https://arxiv.org/abs/2306.03838


Summary and Outlook

• Developed highly skilled, fast weather prediction model with stable long rollouts 
(including open source torch-harmonics, a library for differentiable spherical harmonics transforms in PyTorch)

• Next up: attacking subseasonal-to-seasonal predictions and climate science challenges

• After that: increasing spatio-temporal resolutions

• In process of making SFNO network architecture and trained weights available publicly via NVIDIA Modulus, stay tuned

https://github.com/NVIDIA/torch-harmonics


Thank You


