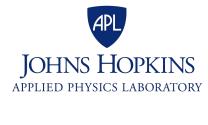


Longitudinal effects on plant species involved in agriculture and pandemic emergence undergoing changes in abiotic stress


Mikaela Cashman¹, Verónica G. Melesse Vergara², John Lagergren², Matthew Lane³, Jean Merlet³, Mikaela Atkinson³, Jared Streich², Christopher Bradburne⁴, Raina Plowright⁵, Wayne Joubert², Daniel Jacobson²

¹Lawrence Berkeley National Laboratory ²Oak Ridge National Laboratory ³University of Tennessee ⁴Johns Hopkins University Applied Physics Laboratory ⁵Cornell University

June 26th 2023 - PASC'23

Cornell University

Motivation: Environmental Stress

Plant and animal species are under selective pressure

Additionally: Land-use change and a rapidly changing climate adds unprecedented pressure

Identify environmental similar geospatial zones & quantify the change each area is experiencing

Identify potentially suitable areas not currently in use & detect the level of abiotic stress

Longitudinal effects on key plant species undergoing changes in abiotic stress | BERKELEY LAB

Method Overview

Detect global regions correlated by environmental features from longitudinal and agglomerative perspectives

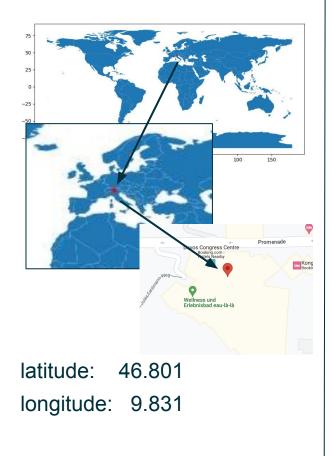
We leverage and enhance a high-performance computing methodology¹

improve computational efficiency remove bias against extreme climates

scale from 500,000 to 8.8 million dry land points

3

- We demonstrate the applicability on species of interest in:
 - o agriculture (e.g., coffee, wine, chocolate)
 - bioenergy (e.g., poplar, switchgrass, pennycress)
 - zoonotic spillover (e.g., eucalyptus, flying foxes)

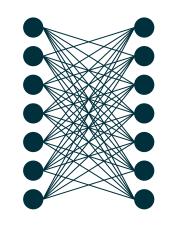


Methods

Climatic clustering and analysis over multiple geological and longitudinal perspectives

Methods | Overview

(1) Vector Generation

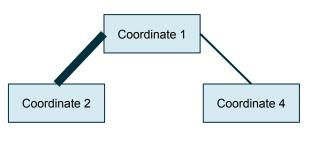


<feature1, feature2, ...>

(2) Correlation Computation

<feature1, feature2, ...>

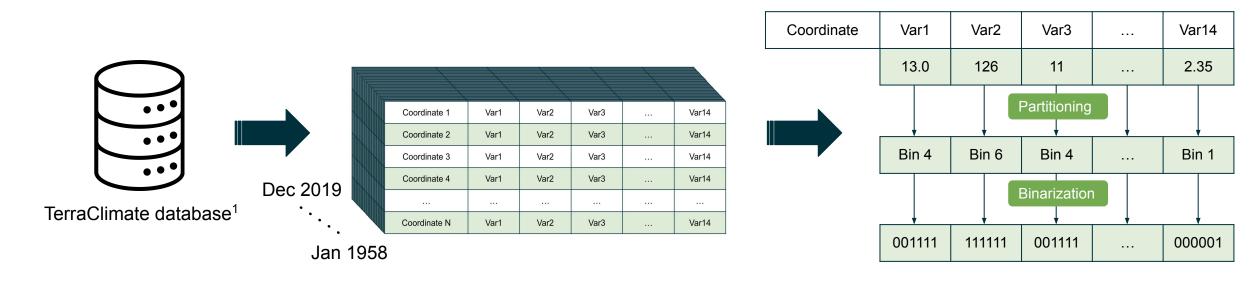
<feature1, feature2, ...>


Coordinate 1Coordinate 2**0.894**Coordinate 1Coordinate 3**0.012**Coordinate 1Coordinate 4**0.543**

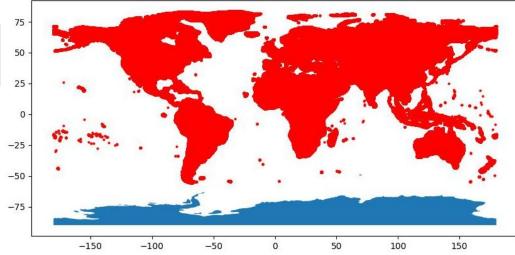
(3) Correlation Output

Coordinate N	Coordinate N-3	0.999		
Coordinate N	Coordinate N-2	0.924		
Coordinate N	Coordinate N-1	0.003		

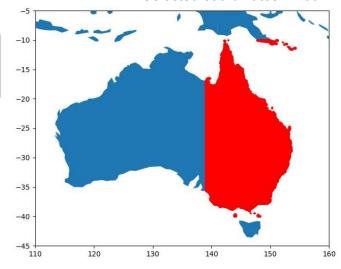
(4) Analysis


Graph representation

Coordinate 3


Longitudinal effects on key plant species undergoing changes in abiotic stress | BERKELEY LAB

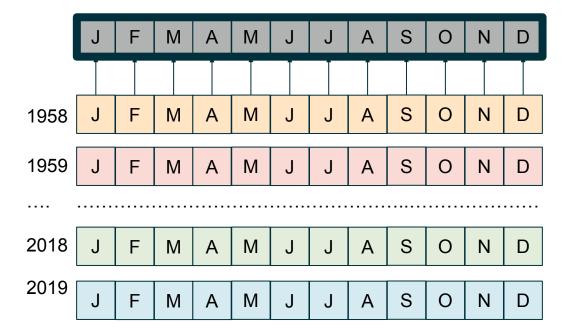
Methods | Vector Generation


Climatic variables							
minimum temperature	runoff						
temperature range	actual evapotranspiration						
vapor pressure	climate water deficit						
precipitation accumulation	soil moisture						
downward surface shortwave radiation	snow water equivalent						
wind-speed	palmer drought severity index						
reference evapotranspiration	vapor pressure deficit						

Methods | Coordinate Perspectives

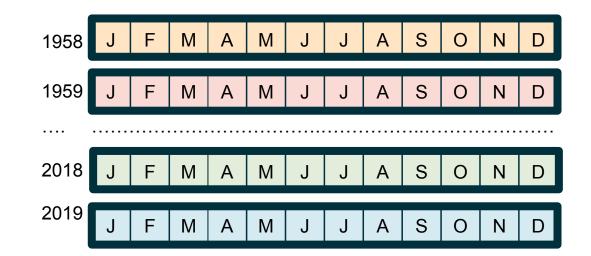
(1) Global View – 8,834,910 dry-land geolocations

*Selected coordinates in red



(2) Regional view of Eastern Australia – 153,149 dry-land geolocations

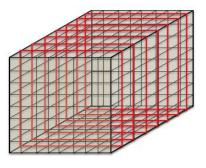
Methods | Longitudinal Perspectives


Agglomerative Perspective (Monthly Means)

(x1) 12 months of 62 years averaged of size 8,404 (14 variables * 12 months *50 bits)

Longitudinal Perspective (Yearly)


(x62) 62 years split into 62 vectors each of size 8,404 (14 variables * 12 months *50 bits)


Methods | Correlation Computation

CoMet

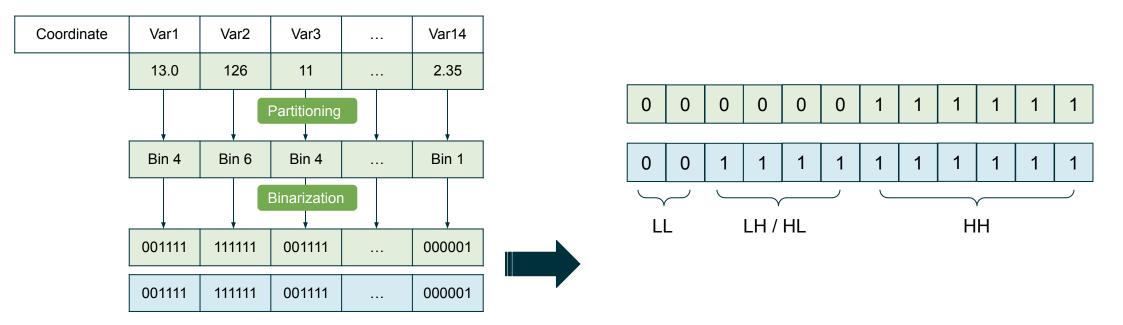
- **Combinatorial Met**rics (CoMet) library^{1,2,3}
 - Exhaustively compute similarity metrics
 - ultra-low precision mathematics using binary data
 - 1-bit general matrix-matrix multiplications

2-way comparisons

3-way comparisons

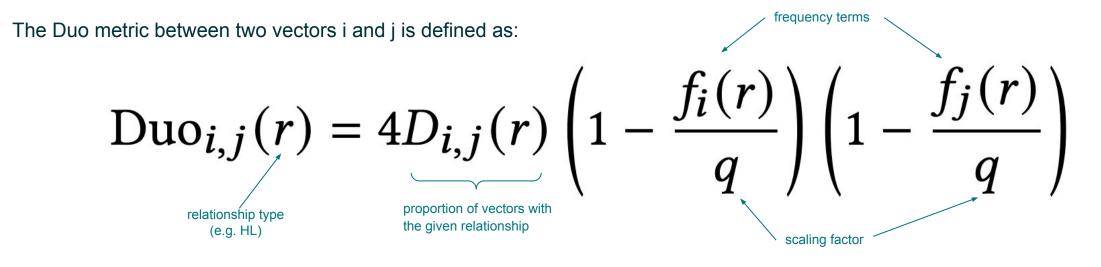
	Node hours	Storage
Global Agglomerative	1,973	15.6 TB
Global Yearly	113,865	1.3 PB

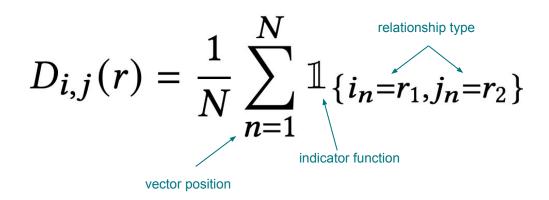
[1] Wayne Joubert, James Nance, Sharlee Climer, Deborah Weighill, and Daniel Jacobson. 2019. Parallel accelerated Custom Correlation Coefficient calculations for genomics applications. Parallel Comput. 84 (may 2019), 15–23.

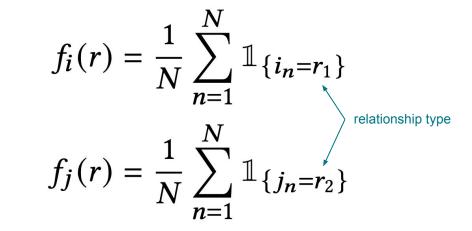

[2] Wayne Joubert, James Nance, Deborah Weighill, and Daniel Jacobson. 2018. Parallel accelerated vector similarity calculations for genomics applications. Parallel Comput. 75 (2018), 130–145.

[3] Wayne Joubert, Deborah Weighill, David Kainer, Sharlee Climer, Amy Justice, Kjiersten Fagnan, and Daniel Jacobson. 2018. Attacking the Opioid Epidemic: Determining the Epistatic and Pleiotropic Genetic Architectures for Chronic Pain and Opioid Addiction. In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC '18). IEEE Press, Piscataway, NJ, USA, Article 57.

Methods | Correlation Metric

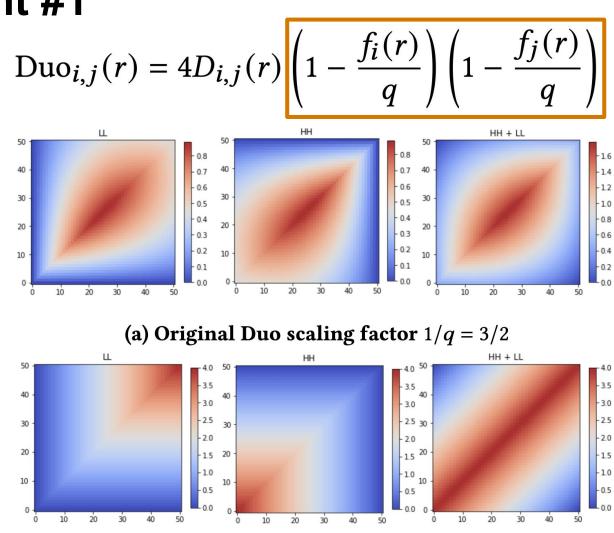

• Binary formatting of feature information translates into a High (1) feature value or a Low (0) feature value


• \rightarrow results in four categories of relationships: High-High (1, 1), High-Low (1, 0), Low-High (0, 1), and Low-Low (0, 0)



• 3-way: results in eight possible categories of relationships: HHH, HHL, LHH, HLH, HLL, LLH, LHL, and LLL

Methods | Correlation Metric

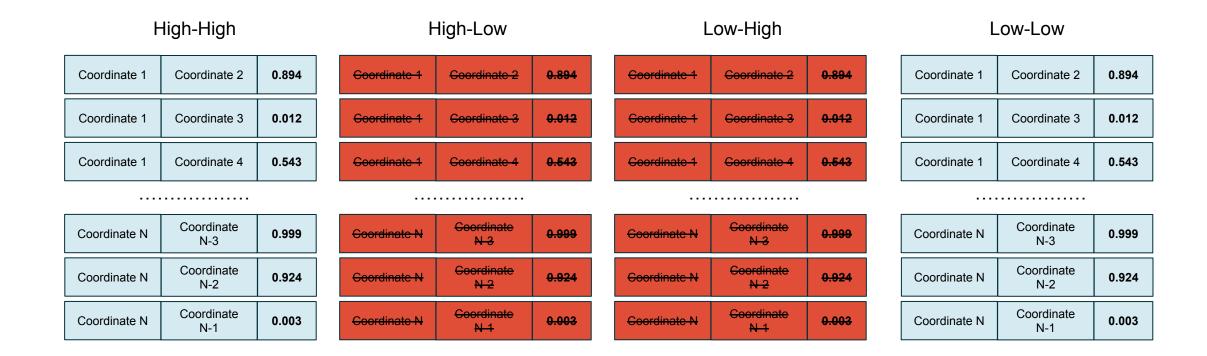

[1] Sharlee Climer, Alan R Templeton, Michael Garvin, Daniel Jacobson, Matthew Lane, Scott Hulver, Brittany Scheid, Zheng Chen, Carlos Cruchaga, and Weixiong Zhang. 2020. Synchronized genetic activities in Alzheimer's brains revealed by heterogeneity-capturing network analysis. bioRxiv (2020).

Longitudinal effects on key plant species undergoing changes in abiotic stress | BERKELEY LAB

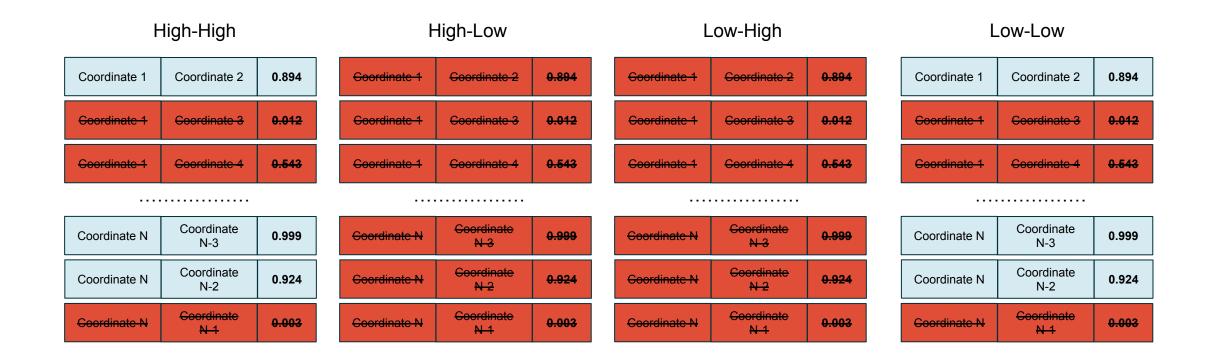
Methods | Enhancement #1

Duo Frequency

- Penalize extremely rare case in genomics studies
- Irrelevant to this application
- Causes bias against extreme climate conditions
- Modification: adjust 1/q from 3/2 to 0 to eliminate
- Equivalent to Sørensen-Dice



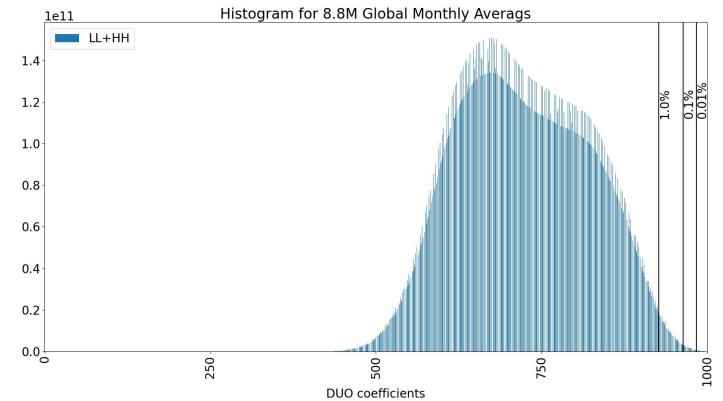
(b) Modified Duo scaling factor 1/q = 0


Methods | Correlation Output

High-High			I	High-Low			Low-High			Low-Low			
Coordinate 1	Coordinate 2	0.894	Coordinate 1	Coordinate 2	0.894		Coordinate 1	Coordinate 2	0.894		Coordinate 1	Coordinate 2	0.894
Coordinate 1	Coordinate 3	0.012	Coordinate 1	Coordinate 3	0.012		Coordinate 1	Coordinate 3	0.012		Coordinate 1	Coordinate 3	0.012
Coordinate 1	Coordinate 4	0.543	Coordinate 1	Coordinate 4	0.543		Coordinate 1	Coordinate 4	0.543		Coordinate 1	Coordinate 4	0.543
••••											••••		
Coordinate N	Coordinate N-3	0.999	Coordinate N	Coordinate N-3	0.999		Coordinate N	Coordinate N-3	0.999		Coordinate N	Coordinate N-3	0.999
Coordinate N	Coordinate N-2	0.924	Coordinate N	Coordinate N-2	0.924		Coordinate N	Coordinate N-2	0.924		Coordinate N	Coordinate N-2	0.924
Coordinate N	Coordinate N-1	0.003	Coordinate N	Coordinate N-1	0.003		Coordinate N	Coordinate N-1	0.003		Coordinate N	Coordinate N-1	0.003

Methods | Correlation Output

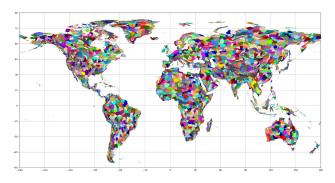
Methods | Correlation Output



How to choose a sensible threshold?

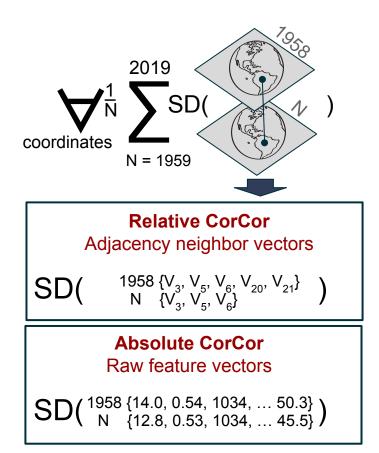
Methods | Enhancement #2

Histogram Method

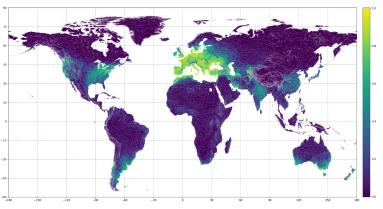

- Store distribution of relation types
- Minimal I/O
- Allows user to know a priori how many metrics will be stored for a given threshold and relation type

Methods | Analysis

Network Clustering


- Source data: graphical representation of correlated geolocations
- **Method:** High performance Markov Clustering (HipMCL¹)
- **Result:** high-resolution clusters defining climatic zones with similar characteristics

[1] Ariful Azad, Georgios A Pavlopoulos, Christos A Ouzounis, Nikos C Kyrpides, and Aydin Buluç. 2018. HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks. Nucleic acids research 46, 6 (2018), e33–e33


Correlations-of-Correlations

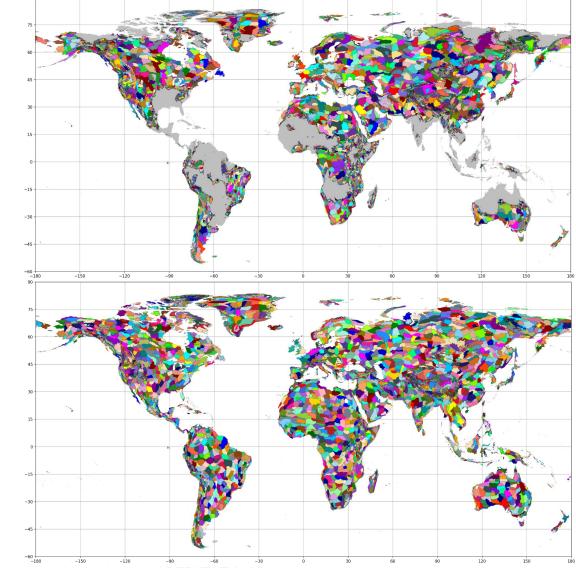
• Time series of global networks

Species Distribution Modeling

- Method: Overlay climatype clusters + species distribution models
- **Models:** statistical machine-learning Maximum Entropy (Maxent²) model
 - species occurrence + environmental data
 - predicted probability distribution³

[2] Steven J. Phillips, Miroslav Dudík, and Robert E. Schapire. Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/

[3] JaneElith, StevenJPhillips, TrevorHastie, MiroslavDudík, YungEnChee, and Colin J Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and distributions 17, 1 (2011), 43–57.



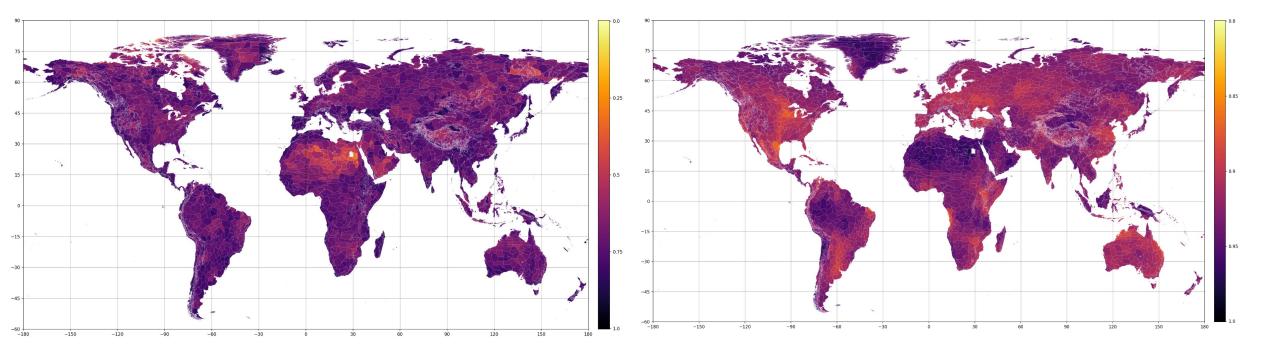
Results

Climatic clustering and analysis over multiple geological and longitudinal perspectives

Results | Duo vs Sørensen-Dice

Duo (37,522,455,884 edges)

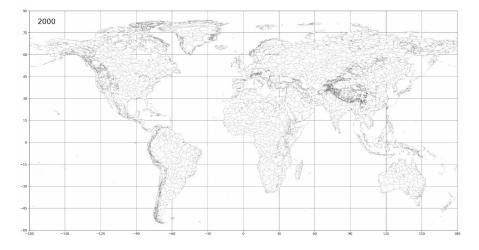
*Gray indicates coordinate not present in any edge


Sørensen-Dice (36,712,590,809 edges)

Longitudinal effects on key plant species undergoing changes in abiotic stress | BERKELEY LAB

Results | Longitudinal Perspectives

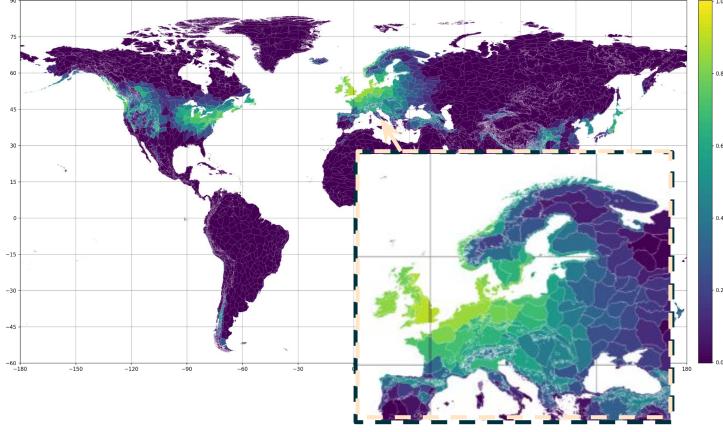
Relative Cor-Cor


Absolute Cor-Cor

Results | Longitudinal Perspectives | Yearly

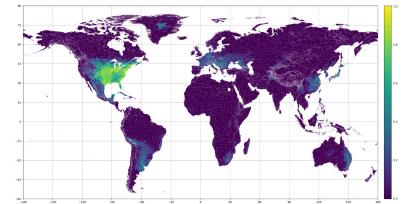
Gif doesn't render on downloaded pdf. Please see:

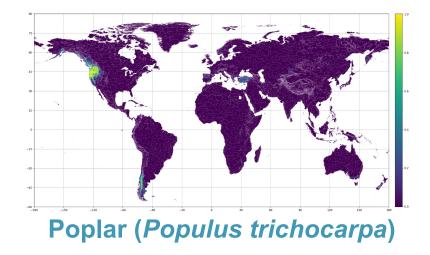
https://github.com/mikacashman/PASC23 Climatypes SupResources


Longitudinal effects on key plant species undergoing changes in abiotic stress | BERKELEY LAB https://github.com/mikacashman/PASC23_Climatypes_SupResources

Results | Overlay w/ Species Distributions

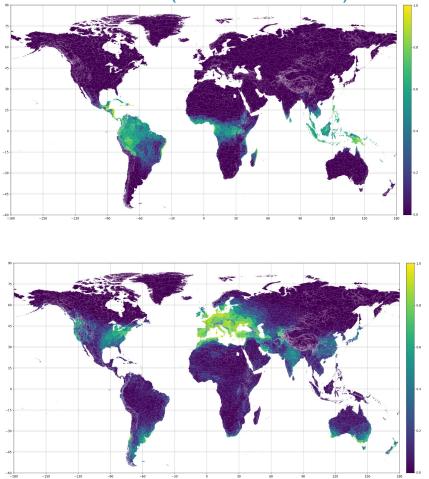
- Global species occurrence data combined with environmental data from the climatic clusters
- Identify what climatic regions (features) contribute to thriving species
- Identify similar regions not currently utilized
- Species distributions across three biological applications:


Results | Overlay w/ Species Distributions | Bioenergy

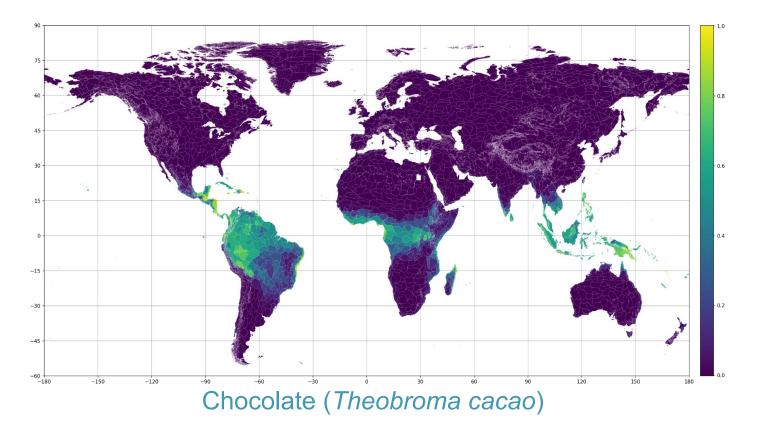


Pennycress (Thlaspi arvense)

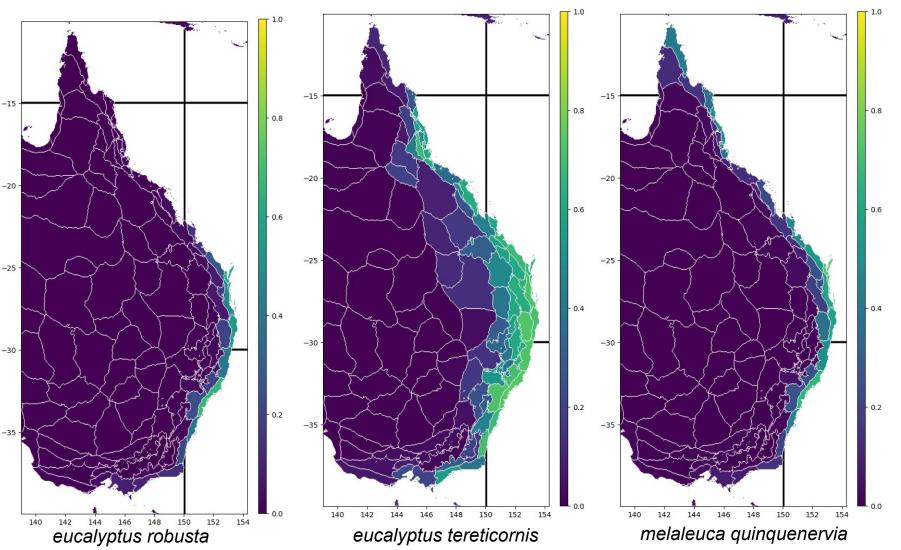
- Bioenergy feedstock for sustainable aviation fuel
- As an emerging cover crop can help assess profile of row crop agriculture


Switchgrass (Panicum virgatum)

Results | Overlay w/ Species Distributions | Agriculture


Coffee (Coffea arabica)

Grape Vine (Vitis vinifera)


Applications

- identify related zones not currently utilized
- predict future ranges
- provide dynamic ranges of climate conditions for regional crop optimization

Results | Overlay w/ Species Distributions | Zoonosis

- Identify regions with pathogen reservoir species
- Food supply impacted by climatic changes
- Could result in zoonotic spillover events
- Use-Case: Potential zoonotic spillover to the Eastern Australia region and eucalyptus species

[1] Peggy Eby, Alison J Peel, Andrew Hoegh, Wyatt Madden, John R Giles, Peter J Hudson, and Raina K Plowright. 2023. Pathogen spillover driven by rapid changes in bat ecology. Nature 613, 7943 (2023), 340–344.

[2] Daniel J Becker, Peggy Eby, Wyatt Madden, Alison J Peel, and Raina K Plowright. 2023. Ecological conditions predict the intensity of Hendra virus excretion over space and time from bat reservoir hosts. Ecology Letters 26, 1 (2023), 23–36.

Summary

Climatic clustering and analysis over multiple geological and longitudinal perspectives

Summary

Identify changes in high-resolution zones across the globe linked by environmental similarity

Refine exhaustive vector comparison methods & apply across 744 months of climatic data

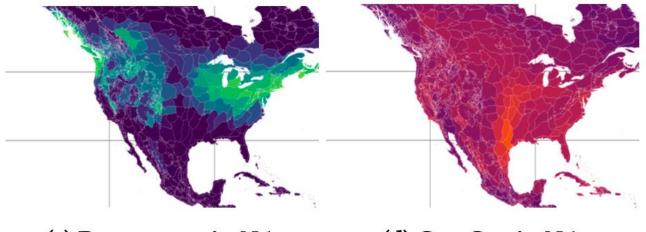
updated similarity metrics

compare agglomerative and longitudinal views compare 2-way and 3-way vector comparisons

demonstrated use on a diverse set of applications

new histogram feature for resource optimization

Implications: reveal locations around the globe experiencing changes in abiotic stress


Future Work

- Combine species distributions with Cor-Cor
- Species specific analyses of indicators of abiotic stress → assess what variables are the primary drivers of environmental change
- Further analyze yearly data w.r.t. species of interest
 - e.g. identify how regional changes might correlate with successful species

(a) Pennycress in Europe

(b) Cor-Cor in Europe

(c) Pennycress in NA

(d) Cor-Cor in NA

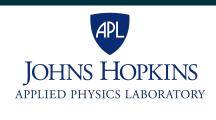
ACKNOWLEDGMENTS

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. Funding was also provided by the Integrated Pennycress Resilience Project (IPReP), the Center for Bioenergy Innovation (CBI), and the DOE Systems Biology Knowledgebase (KBase), all of which are supported by the Genomic Sciences Program of Office of Biological and Environmental Research in the DOE Office of Science. KBase is funded under Award Numbers DE-AC02-05CH11231, DE-AC02-06CH11357, DE-AC05-00OR22725, and DE-AC02-98CH10886. The authors would also like to acknowledge funding from the U.S. National Science Foundation (EF-2133763). This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Mikaela Cashman¹, Verónica G. Melesse Vergara², John Lagergren², Matthew Lane³, Jean Merlet³, Mikaela Atkinson³, Jared Streich², Christopher Bradburne⁴, Raina Plowright⁵, Wayne Joubert², Daniel Jacobson²

Jean Merlet is giving a talk tomorrow at 2:30

Longitudinal effects on plant species involved in agriculture and pandemic emergence undergoing changes in abiotic stress


Mikaela Cashman¹, Verónica G. Melesse Vergara², John Lagergren², Matthew Lane³, Jean Merlet³, Mikaela Atkinson³, Jared Streich², Christopher Bradburne⁴, Raina Plowright⁵, Wayne Joubert², Daniel Jacobson²

¹Lawrence Berkeley National Laboratory
²Oak Ridge National Laboratory
³University of Tennessee
⁴Johns Hopkins University Applied Physics Laboratory
⁵Cornell University

June 26th 2023 - PASC'23

Cornell University

