HUMAN FACTORS IN INDUSTRIAL RESEARCH SOFTWARE ENGINEERING

Katharina Dworatzyk and Tobias Schlauch Institute for Software Technology German Aerospace Center (DLR), http://www.dlr.de/sc

Minisymposium: Code Complete and More: Emerging Efforts to Improve Software Quality, PASC23, 28.06.2023

Research Software Development at DLR

Background

- 10,000+ employees working in 50+ institutes at 30 different locations
- ~20% of DLR employees involved in research software development
- Variety of fields, maturity, and technologies: https://doi.org/10.1145/3387940.3392244

DLR Software Engineering Initiative

- Activities started in 2005 as part of DLR's quality assurance program
- Since 2017 focus moved more and more on research software development aspects
- Work is driven by the DLR Institute for Software Technology and funded by DLR IT

Examples of DLR Software (1/3)

Examples of DLR Software (2/3)

Examples of DLR Software (3/3)

DLR Software Engineering Initiative

DLR Software Engineering Initiative Examples

DLR SE Guidelines https://rse.dlr.de/

Change Management

	Comment	Status
EÄM.2: The most important information describing	Build steps are	todo
how to contribute to development are stored in a	missing	
central location. (from application class 1)		

EÄM.5: Known bugs, important unresolved tasks and ideas are at least noted in bullet point form and stored centrally. (from application class 1)

EÄM.7: A repository is set up in a version control system. The repository is adequately structured and ideally contains all artifacts for building a usable software version and for testing it. (from application class 1)

EÄM.8: Every change of the repository ideally serves a specific purpose, contains an understandable description and leaves the software in a consistent, working state. (from application class 1)

Git

Continuous

Collaboration

DLR GitLab Instance

EMPIRICAL RESEARCH INTO RESEARCH SOFTWARE AT DLR

How to support such a heterogenous group to achieve the "right" level of software quality?

By learning about who they are and what they do:

(PhD) \$	Students
----------	----------

- Basic programming skills
- Contribute to existing software or develop prototypes
- Main focus: Get job / thesis done

Researchers

- Basic programming skills
- Contribute to existing software or develop small tools
- Main focus: Good research

Software Engineers

- Advanced level of software development skills
- Lead software projects or contribute as consultant
- Main focus: Good software

Overview

2018 DLR-wide software survey

- Sample of n=612
- Age of 25-34 years (44%)
- Master (53%) or PhD (37%)
- Computer Science or Engineering background (62%)
- Software development experience M=10.8 SD=8.8

2019 DLR sample of Helmholtz-wide software survey

- Sample of n=80
- -
- -
- Mostly working in Aeronautics,
 Space and Transport (73%)
- Software development experience M=12.2 SD=9.6

2021 DLR sample of Helmholtz-wide software survey

- Sample of n=79
- -
- -
- Mostly working in Aeronautics,
 Space and Transport (88%)
- Software development expertise self-assessed as proficient (37%) or advanced (34%)

Time Resources

2018
DLR-wide software survey

2019
DLR sample of Helmholtz-wide software survey

2021
DLR sample of Helmholtz-wide software survey

Programming Languages

2018
DLR-wide software survey

2019
DLR sample of Helmholtz-wide software survey

2021
DLR sample of Helmholtz-wide software survey

Version Control Systems

2018
DLR-wide software survey

2019
DLR sample of Helmholtz-wide software survey

2021
DLR sample of Helmholtz-wide software survey

Documentation

2018
DLR-wide software survey

2019
DLR sample of Helmholtz-wide software survey

2021
DLR sample of Helmholtz-wide software survey

Empirical Research into Research Software at DLRWorkshops

DLR-internal Training Courses

Topic	Approx. # participants per year
Introduction to Git and GitLab	50
Foundations of Research Software Publication	30
GitLab for Software Development in Teams	30

Topic	# Participants	Topic	# Participants
Kick-Off	57	SE for Data Science	55
Tools and Processes	56	Software Architecture	70
Open and Inner Source	53	Distributed Teams	71
Software Architecture	52	Inner Source and Legacy Code	65
Embedded Systems	47	SE meets Research Software Development	?

Empirical Research into Research Software at DLRWorkshop Pre-Post-Surveys

Knowledge

Self-Efficacy

Human Subject Pool

Motivation

- Streamline study organization
- Facilitate re-use of previous surveys to introduce more consistency
- Pre-screen for predefined criteria to recruit only relevant subjects
- Simplify sampling for cross-sectional studies
- Realize longitudinal studies to identify trends while controlling for cohort effects
- Realize within-subject designs

Human Subject Pool

Mission

- Establish initial pool of 30+ subjects and test subject pool system within DLR SE network
- Expand subject pool to 500 subjects and conduct large-scale SE survey
- Expand subject pool beyond DLR including other Helmholtz centers and additional German research organizations to get a better picture of the German RSE community

Human Subject Pool

Challenges

- How to motivate initial registration?
 - Establish a "survey culture"
 - Make relevance of previous results more transparent
- How to motivate participation?
 - PhD students: credit
 - Researchers and software engineers: monetary compensation
- How to handle no-shows?
- How to handle high fluctuation?

Summary

- Software of different maturity levels is developed and maintained by researchers with varying software engineering backgrounds at DLR.
- DLR's software engineering initiative aims to provide the overall environment to support "software developers" at DLR.
- DLR regularly conducts surveys to better understand the current practice and needs of the individual groups and to optimize our support offerings.
- However, previous surveys employed a cross-sectional design and focused on different aspects.
- For future studies, we aim to build a human subject pool to facilitate sampling and to investigate long-term effects.

Copyright and License Information

All content is licensed under <u>Attribution 4.0 International (CC BY 4.0)</u> with the following exceptions:

- DLR logo, slide layout, DLR locations map on slide 2, © German Aerospace Center. All rights reserved.
- "Rollin Justin", slide 3 (left), © German Aerospace Center. CC BY 3.0.
- "TET-1 and BIROS constellation", slide 3 (top right), © German Aerospace Center. CC BY-NC-ND 3.0.
- "Analyse der Erdmantelkonvektion in CosmoScout VR", slide 3 (bottom right), © German Aerospace Center. CC BY-NC-ND 3.0.
- "Darstellung von Verwirbelungen an einem Flugzeugflügel", slide 4 (left), © German Aerospace Center. CC BY-NC-ND 3.0.
- "Numerical simulation of ignition processes in multi-phase flows", slide 4 (top right),
 © German Aerospace Center. CC BY-NC-ND 3.0.
- "Simulation of Urban Mobility (SUMO) Screenshot", slide 4 (bottom right), © German Aerospace Center. CC BY-NC-ND 3.0.
- "RCE Screenshot", slide 5 (top left), © German Aerospace Center. CC0 1.0.
- "Virtual Satellite Screenshot", slide 5 (bottom left), © German Aerospace Center. CC BY-NC-ND 3.0.
- "Synergies from the combination of global aerosol model simulations, in-situ measurements and Lidar observations", slide 5 (right),
 © German Aerospace Center. CC BY-NC-ND 3.0.
- "Group of three persons discussing", slide 16, © Katerina Limpitsouni. unDraw.co license.
- "Human subject pool", slides 19 21, © Katerina Limpitsouni. unDraw.co license.
- Philae landing on comet 67 P/Churyumov-Gerasimenko, slide 25, © German Aerospace Center. CC BY 3.0.

