
in-situ visualization solutions come to the rescue

PASC 2023

Jean M. Favre, CSCS

June 27, 2023

Abstract

Scientific visualization and analysis are key ingredients in HPC simulation workflows. For

decades, the dominant paradigm has been post-hoc visualization; simulation codes iterate and

save files to disk, giving the domain scientists the opportunity to read the data back at a later

time. However, in recent years where data volumes are growing at an ever-diverging rate as

compared to I/O subsystems, this traditional paradigm has been greatly stressed out. In-situ

processing helps mitigate these I/O bottlenecks, enabling simulation and visualization

calculations to run in-memory, at higher spatial and temporal resolution, while the simulation is

running, limiting, or avoiding the transfer of raw data to disks. We will introduce two open-

source libraries, “ParaView Catalyst” and “Ascent”, enabling in-situ data analysis and

visualization. In-situ libraries can analyze, and transform data, render images, and export

results in real-time, but require careful planning because we miss the exploratory, “what-if”

analysis process enabled by the interactive visualization applications we are accustomed to.

Doing in-situ visualization represents a paradigm shift that will impact the scientist's workflow.

We will summarize our early adoption of in-situ visualization scenarios with examples from

different simulation fields.

PASC 2023

Outline

 Motivations

 A brief taxonomy of in-situ visualization solutions

 Remarks about file formats

 Introduction to Conduit

 Conduit + Catalyst

 Conduit + Ascent

 Introduction to ADIOS and Fides

 Engines (in particular SST)

 Adios plugins (a ParaView plugin)

 Catalyst + Adios + SST => Catalyst + ParaView

 Summary
PASC 2023

Motivation

 What is in-situ visualization, why do we need it? What solutions are available to

implement it?

 See recent book “In Situ Visualization for Computational Science”

“Oak Ridge National Laboratory saw three generations of leading supercomputers-

Jaguar (2009) to Titan (2012) to Summit (2018)- yield a 100X increase in computer

power (from 1.75 petaFLOPS to more than 175 petaFLOPS), but only a 10X

increase in filesystem performance (from 240 GB/s to 2.5TB/s)” (from the book

cited above)

PASC 2023

https://link.springer.com/book/10.1007/978-3-030-81627-8

Post-hoc visualization

 For decades, the dominant paradigm has been post-hoc visualization

 Simulation codes iterate, and save data at regular time intervals.

 Visualization and domain scientists can then read the data back from storage and interactively

explore the data without time constraints

“Without I/O, no visualization is possible”

The true cost of doing I/O is an aggregate of the solver’s I/O phase and

the many iterations of visualization sessions.

PASC 2023

Post-hoc visualization

Figure taken from “In Situ Visualization at Extreme Scale: Challenges and Opportunities”, Kwan-Liu Ma, IEEE CG&A, nov/dec 2009

Even if scientists could afford to keep most

of the data for analysis, they must transfer

the data to a machine with sufficient

capacity and processing power:

 Very high data transfer

Visualization machine needs to be almost

as powerful as the supercomputer

The alternative: use smaller temporal and

spatial subsets

PASC 2023

Post-hoc visualization

PASC 2023

in situ visualization

Instrument the code such that both the

simulation and visualization

calculations run on the same hardware

This runtime co-processing can render

images directly or extract features --

which are much smaller than the

original raw data

Figure taken from “In Situ Visualization at Extreme Scale: Challenges and Opportunities”, Kwan-Liu Ma, IEEE CG&A, nov/dec 2009

PASC 2023

In-situ visualization

PASC 2023

In-situ visualization has raised quite a few questions

 Sharing physical resources and domain decomposition?

 What % of time can we afford to “do visualization” vs. “advance the solver”?

 Which feature extraction and visualization tasks are best suited for on-the-fly

processing?

 Since less data would be effectively stored to disk, should we augment it with

ancillary data?

 Can we provide a generic abstraction to describe the data and mesh structures?

PASC 2023

A third paradigm also emerged: in-transit visualization

Figure taken from “In Situ Visualization for Computational Science”, Hank Childs et al., IEEE CG&A, nov/dec 2019

PASC 2023

Many definitions and colloquial use for “in-situ”

Overall motivation: process data in the processor’s memory space, without

touching the disks, even if data is moved to a distinct set of resources (in-transit)

 Co-processing, concurrent processing, run-time visualization, “in-situ”, “in place”, etc..

 "A Terminology for In Situ Visualization and Analysis Systems“, Hank Childs et al, International

Journal of High Performance Computing Applications, 34(6):676–691

http://cdux.cs.uoregon.edu/pubs/ChildsIJHPCA.pdf

 For the scope of this paper, “in situ processing” was defined to be:

“processing data as it is generated”

PASC 2023

http://cdux.cs.uoregon.edu/pubs/ChildsIJHPCA.pdf

in situ systems are described via multiple, distinct axes

 Integration type

How visualization and analysis code is integrated with the simulation code?

 Proximity

How close is the visualization code from the data?

 Access

How does the simulation give access to the data?

 Division of execution:

how compute resources are shared between simulation and in situ routines.

 Operation controls:

the mechanism for selecting which operations are executed during run-time

 Output type

which types of operations are performed on the simulation data before it is output.

PASC 2023

(fig taken from the paper)

PASC 2023

What about my [the solver] internal data model?

Do the standard visualization apps support all the data structures I use in my code?

 Use Data Adaptors (e.g. NEK5000 spectral code => converted to hexahedra in a VTK plugin)

 File formats in traditional post-hoc visualization most-often preserve, document, the nature of

the grid. See for example the family of VTK XML-based file formats (*.pvti, *.pvtu, *.pvtp, …)

 Some others don’t.

 Some I/O libraries require ad-hoc conventions for proper data discovery (e.g. HDF5 Gadget)

PASC 2023

Introduction to Conduit

Conduit: Simplified Data Exchange for HPC Simulations

 Conduit is an open source project from Lawrence Livermore National Laboratory

that provides an intuitive model for describing hierarchical scientific data in C++,

C, Fortran, and Python. It is used for data coupling between packages in-core,

serialization, and I/O tasks.

 Conduit provides a convention to describe computational simulation meshes.

This is called the Mesh Blueprint.

 Illustration of Mesh Blueprint examples

 Ascent and Catalyst use Conduit for describing data and other parameters which

can be communicated between a simulation and the visualization apps.

PASC 2023

https://llnl-conduit.readthedocs.io/en/latest/index.html
https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#mesh-blueprint
https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#mesh-blueprint-examples

import conduit

n = conduit.Node()

n[“key"] = "data"

print(n)

key: "data"

n = conduit.Node()

n[“key"] = "data"

n["a/b/c"] = "d"

n["a"]["b"]["e"] = 64.0

print(n)

key: "data"

a:

b:

c: "d"

e: 64.0

Conduit: super simple and intuitive interface to build nodes

PASC 2023

The Node class provides two ways to hold data,

the data is either owned or externally

described:

documentation

vals = numpy.zeros((5,),dtype=numpy.float64)

n = conduit.Node()

n["v_owned"].set(vals)

n["v_external"].set_external(vals)

Data ownership in Conduit

PASC 2023

https://llnl-conduit.readthedocs.io/en/latest/tutorial_python_ownership.html#data-ownership

Conduit: A uniform mesh example

Node mesh;

// create the coordinate set

mesh["coordsets/coords/type"] = "uniform";

mesh["coordsets/coords/dims/i"] = 3;

mesh["coordsets/coords/dims/j"] = 3;

// add origin and spacing to the coordset (optional)

mesh["coordsets/coords/origin/x"] = -10.0;

mesh["coordsets/coords/origin/y"] = -10.0;

mesh["coordsets/coords/spacing/dx"] = 10.0;

mesh["coordsets/coords/spacing/dy"] = 10.0;

PASC 2023

Conduit: A uniform mesh example

// add the topology

// this case is simple b/c it's implicitly derived from the coordinate set

mesh["topologies/topo/type"] = "uniform";

// reference the coordinate set by name

mesh["topologies/topo/coordset"] = "coords";

// add a simple element-associated field

mesh["fields/ele_example/association"] = "element";

// reference the topology this field is defined on by name

mesh["fields/ele_example/topology"] = "topo";

// set the field values, for this case we have 4 elements

mesh["fields/ele_example/values"].set(DataType::float64(4));

PASC 2023

Ascent: an in situ visualization and analysis library based on Conduit

PASC 2023

Ascent

Ascent is an easy-to-use flyweight in situ visualization and analysis library for

HPC simulations:

 Supports: Making Pictures, Transforming Data, and Capturing Data for use

outside of Ascent

 Young effort, yet already includes most common visualization operations

 Provides a simple infrastructure to integrate custom analysis

 Provides C++, C, Python, and Fortran APIs

 Ref

“The ALPINE in situ infrastructure: Ascending from the ashes of strawman”, M. Larsen et al., Proc. 3rd Workshop In Situ Infrastructures Enabling

Extreme Scale Anal. Vis. Denver, CO, USA, Nov. 12–17, 2017

PASC 2023

https://ascent.readthedocs.io/en/latest/index.html
https://link.springer.com/chapter/10.1007/978-3-030-81627-8_12

Ascent

based on several components:

 The Conduit Mesh Blueprint!

 Runtimes providing analysis,

rendering and I/O

 Runtimes will execute a number of

actions, defined by Conduit Nodes

 Data Adaptors (internal)

PASC 2023

"action": "add_scenes",

"scenes": {

"s1": {

"plots": {

"p1": { "type": "pseudocolor",

"field": "Density“ } },

"renders": {

"r1": {

"image_prefix": “DensityImage.%05d",

"camera": {

"look_at": [0, 0, 0],

"position": [-2.17, 1.79, 1.80],

"up": [0.44, 0.84, -0.30]

}

-

action: "add_scenes"

scenes:

s1:

plots:

p1:

type: "pseudocolor"

field: "Density"

renders:

r1:

image_prefix: “DensityImage.%05d"

camera:

azimuth: 30

elevation: 11

A scene description (JSON or YAML)

PASC 2023

Let’s add a pipeline description

"action": "add_pipelines",

"pipelines": {

"pl1": {

"f1": {

"type": "threshold",

"params": {

"field": "Density",

"min_value": 1.4,

"max_value": 2000

}

}

}

}

}, PASC 2023

Mesh data

Threshold

1.4 < Density < 2000

The scene description is refined with the new pipeline

"action": "add_scenes",

"scenes": {

"s1": {

"plots": {

"p1": {

"type": "pseudocolor",

"pipeline": "pl1",

"field": "Density"

}

},

PASC 2023

Mesh data

Threshold

1.4 < Density < 2000

Scene rendering

Example: Instrument an SPH simulation package with Ascent

 The smooth particle hydrodynamics (SPH) technique is a purely Lagrangian

method. SPH discretizes a fluid in a series of interpolation points whose

distribution follows the mass density of the fluid.

 PASC, the Swiss Platform for Advanced Scientific Computing initiative, supports

the SPH-EXA project developing an SPH library.

 SPH-EXA is a C++20 headers-only code with no external software

dependencies. The parallelism is currently expressed via the following models:

MPI, OpenMP, CUDA and HIP.

PASC 2023

https://www.pasc-ch.org/
https://github.com/unibas-dmi-hpc/SPH-EXA

Instrument the SPH-EXA simulation package with Ascent

 Define a Conduit mesh definition

 Define a Conduit scene definition

About 150 lines of code. Total!

PASC 2023

https://github.com/unibas-dmi-hpc/SPH-EXA/blob/develop/main/src/ascent_adaptor.h#L109
https://github.com/unibas-dmi-hpc/SPH-EXA/blob/develop/main/src/ascent_adaptor.h#L45

particle_set = """

coordsets:

coords:

type: "explicit"

values:

x: [0.0, 10.0, 20.0, 30.0]

y: [0.0, 10.0, 20.0, 30.0]

z: [0.0, 10.0, 20.0, 30.0]

"""

conduit::Node mesh;

mesh["state/cycle"].set_external(&d.iteration);

mesh["state/time"].set_external(&d.ttot);

mesh["coordsets/coords/type"] = "explicit";

mesh["coordsets/coords/values/x"].set_external(&d.x);

mesh["coordsets/coords/values/y"].set_external(&d.y);

mesh["coordsets/coords/values/z"].set_external(&d.z);

// The heavy-data is available via shallow-copy links

Using Conduit, a particle set is trivially described [the coordinates]

PASC 2023

particle_set = """

topologies:

mesh:

type: "unstructured"

elements:

shape: "point"

connectivity: [0, 1, 2, 3]

coordset: "coords"

"""

mesh["topologies/mesh/type"].set("unstructured");

mesh["topologies/mesh/elements/shape"].set("point");

mesh["topologies/mesh/coordset"].set("coords");

std::vector<int> conn(N); // N is # of particles

std::iota(conn.begin(), conn.end(), 0);

mesh["topologies/mesh/elements/connectivity"].set_external(conn);

Using Conduit, a particle set is trivially described [the topology]

PASC 2023

particle_set = """

fields:

rho:

association: "vertex"

values: [-1, -2, -3, -4]

topology: "mesh"

volume_dependent: "false"

units: "g/cc"

"""

auto fields = mesh["fields"];

// Density scalar field

fields["rho/association"].set("vertex");

fields["rho/topology"].set("mesh");

fields["rho/volume_dependent"].set("false");

// Conduit supports shallow copy

fields["rho/values"].set_external(&d.rho);

Using Conduit, a particle set is trivially described [the solution fields]

PASC 2023

Catalyst: an API specification developed for simulations (and other

scientific data producers) to analyze and visualize data in situ

PASC 2023

Catalyst: an in-situ API with support for an ABI interface

enum catalyst_status catalyst_initialize(const conduit_node* params);

enum catalyst_status catalyst_finalize(const conduit_node* params);

enum catalyst_status catalyst_execute(const conduit_node* params);

Optional:

enum catalyst_status catalyst_results(conduit_node* params);

enum catalyst_status catalyst_about(conduit_node* params);

https://catalyst-in-situ.readthedocs.io

PASC 2023

https://catalyst-in-situ.readthedocs.io/

ParaView Catalyst

 ParaView-Catalyst is an implementation of the Catalyst in situ

API that uses ParaView for data processing and rendering.

 ParaView-Catalyst supports a subset of the Mesh Blueprint.

Simulations that can use the Mesh Blueprint to describe their

data can directly use ParaView’s Catalyst implementation for in

situ analysis and visualization.

 ParaView-Catalyst

 ParaView-Catalyst Blueprint

PASC 2023

https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#mesh-blueprint
https://kitware.github.io/paraview-docs/nightly/cxx/ParaViewCatalyst.html
https://kitware.github.io/paraview-docs/nightly/cxx/ParaViewCatalystBlueprint.html

Conduit + ParaView Catalyst

The ParaView Catalyst Python scripts

 An interactive session with the ParaView application with a representative

template input file, and a set of visualization filters can be tuned by the user in an

offline fashion [not connected to a running solver]

 ParaView provides hybrid parallelism out-of-the-box

 MPI-enabled

 SMP multi-threading

 CUDA-enabled filters

 The Python scripts are completely interchangeable between the batch-mode

ParaView execution (reading data from disk), and the in-situ execution

PASC 2023

grid = OpenDataFile(registrationName='grid',

filename=['/LULESH/datasets/data_000009.vtpd'])

renderView1 = GetRenderView()

rep = Show()

ColorBy(rep, ['POINTS', 'velocity'])

Render()

execute in batch-mode with data read from disk

from paraview.simple import

SaveExtractsUsingCatalystOptions

SaveExtractsUsingCatalystOptions(options)

grid = TrivialProducer(registrationName='grid‘)

renderView1 = GetRenderView()

rep = Show()

ColorBy(rep, ['POINTS', 'velocity'])

v = CreateExtractor('VTPD', grid)

v.Trigger = 'TimeStep'

v.Trigger.Frequency = 30

v.Writer.FileName =

‘data_{timestep:06d}.vtpd‘

Catalyst scripts (batch-mode vs. in-situ mode)

PASC 2023

ParaView-Catalyst Blueprint

 Defines the options accepted by catalyst_initialize(); these include things like

ParaView Python scripts to load, directories to save data

 Defines the protocol for catalyst_execute() and includes information about

Catalyst channels i.e. ports on which data is made available

Defines the protocol for catalyst_finalize()

PASC 2023

node[“catalyst/scripts/script/filename”] = …

node[“catalyst/state/cycle”] =

node[“catalyst/state/time”] =

node[“catalyst/channels/grid/type”] = “mesh”

node[“catalyst/channels/grid/data”] =

The Catalyst glue code for the

SPH-EXA solver is 144 lines of

code

Enabling in-situ visualization can

be optionally compiled

int main(int argc, char** argv)

{

MPI_Init_and_Code_Init();

for (d.iteration = 0; d.iteration <= maxStep; d.iteration++)

{

Solve_For_Each_Timestep();

}

return exitSuccess();

}

Code instrumentation - before

PASC 2023

 The Catalyst glue code for the

SPH-EXA solver is 144 lines of

code

 The execution driver is

instrumented with 4 lines of code

 Total: 148 lines of code

#include "CatalystAdaptor.h"

int main(int argc, char** argv)

{

MPI_Init_and_Code_Init();

CatalystAdaptor::Initialize(argc, argv);

for (d.iteration = 0; d.iteration <= maxStep; d.iteration++)

{

Solve_For_Each_Timestep();

CatalystAdaptor::Execute(d, domain.startIndex());

}

CatalystAdaptor::Finalize();

return exitSuccess();

}

Code instrumentation - after

PASC 2023

What about “Operations Control”?

Adaptive Control

 Choose different pathes of execution based on queries/triggers
 The catalyst_execute(ConduitNode) script can be customized

def catalyst_execute(node):

threshold = 1.4

if reader.PointData[“Density”].GetRange()[1] > threshold:

print(“density at timestep”, node.timestep)

Extract particles where Density > threshold

else:

use ALL particles

PASC 2023

renderView1 = CreateView('RenderView')

selection=SelectPoints()

selection.QueryString="Density >= 1.4“

extractSelection = ExtractSelection()

thresholdDisplay = Show(extractSelection)

ColorBy(thresholdDisplay, ['POINTS', 'Density'])

pNG1 = CreateExtractor('PNG', renderView1)

pNG1.Trigger = 'TimeStep'

pNG1.Writer.FileName =
'threshold_{timestep:06d}{camera}.png'

pNG1.Trigger.Frequency = 100

"action": "add_pipelines",

"pipelines": {

"pl1": {

"f1": {

"type": "threshold",

[…]

"action": "add_scenes",

"scenes": {

"s1": {

"plots": {

"p1": {

"type": "pseudocolor",

"pipeline": "pl1",

[…]

"renders": {

"r1": {

"image_prefix": "ThresholdImage.%05d",

ParaView pipeline vs. Ascent pipeline

PASC 2023

A look in the direction of ADIOS

PASC 2023

ADIOS

• Adaptable Input Output System:

summary

• Extreme scale I/O: YES!

• A file-only I/O library: NO!

• ADIOS Engines:

• BP5

• Sustainable Staging Transport

(SST)
Figure taken from “The Adaptable IO System (ADIOS)”, book chapter in

In Situ Visualization for Computational Science

PASC 2023

https://adios2.readthedocs.io/en/latest/introduction/introduction.html#what-adios2-is-and-isn-t
https://adios2.readthedocs.io/en/latest/engines/engines.html
https://link.springer.com/book/10.1007/978-3-030-81627-8

ADIOS I/O Abstraction

• “Variables” (n-dimensional distributed arrays of a particular type)

• “Attributes” (labels associated with individual variables or the entire

output data set).

• “Steps” specify when the data is available for output.

N.B. Missing are descriptions of mesh types…….. We’ll follow up on that…

N.B. There is nothing in the ADIOS interface that prescribes how to

handle the data

PASC 2023

ADIOS SST Engine

• SST allows direct connection of data producers and consumers via the ADIOS2

write/read API

• the SST buffering policy can be configured at run-time

• SST readers and writers do not necessarily move in lockstep, but depending

upon the queue length parameters and queueing policies specified, differing

reader and writer speeds may cause one or the other side to wait for data to

be produced or consumed, or data may be dropped if allowed by the

queueing policy

• SST supports full MxN data distribution

PASC 2023

Post-hoc Visualization with ADIOS2 and Fides

Parallel Data Producer

ParaView Parallel

Visualization

Raw Data Storage

Fides Reader

Post-hoc

visualization

“BP4”

Visualization Outputs Storage

PASC 2023

<?xml version="1.0"?>

<adios-config>

<io name="SimulationOutput">

<engine type=“BP4">

</engine>

</io>

Fides: an ADIOS Schema

• Schemas provide the ability to annotate the semantics of the array-

based layout of data in ADIOS.

• They provide the meaning of each data array, and the relationship

between groups of arrays:

• Coordinates arrays

• Connectivity arrays

• Fides is a library that uses a JSON data model to map ADIOS2

data arrays to VTK-m datasets.

• Simulations already using ADIOS2 do not need to make any

changes to the way their data is written/streamed by ADIOS.

PASC 2023

https://fides.readthedocs.io/en/latest/

Fides: an ADIOS Schema

• An ADIOS description of Variable and Attributes is augmented with

attributes describing the supported data model

PASC 2023

https://fides.readthedocs.io/en/latest/components/components.html#data-model-generation

In-transit Visualization with ADIOS2

VTK-m

Visualization script

Parallel Data Consumer

Parallel Data Producer

“SST”

Visualization Outputs Storage

PASC 2023

<?xml version="1.0"?>

<adios-config>

<io name="SimulationOutput">

<engine type="SST">

<parameter key="RendezvousReaderCount“

value="1"/>

<parameter key="QueueLimit“

value="5"/>

<parameter key="QueueFullPolicy“

value="Block"/>

</engine>

</io>

VTK-m facts

 Advances in processor technology include ever greater numbers of cores,

hyperthreading, accelerators with integrated blocks of cores, and special

vectorized instructions, all of which require more software parallelism to achieve

peak performance

 VTK-m is a visualization toolkit for multi-/many-core architectures with support for

finer threading typical in HPC today

 VTK-m has its own self-contained lightweight rendering package

 Rendering done by VTK-m’s rendering classes is performed offscreen

 VTK-m data model differs from the traditional VTK data model!

PASC 2023

https://m.vtk.org/

ADIOS Plugin

• ADIOS has the ability for users to load their own engines and

operators through plugins

• As of v2.9, ADIOS has a ParaView “plugin”

• Uses Catalyst and the Fides JSON description

• Uses the “inline” engine

• The Inline engine provides in-process communication between

writers and readers, avoiding the copy of data buffers.

• This engine is focused on the N → N case

• Data are not copied to a file or to another buffer

PASC 2023

https://adios2.readthedocs.io/en/latest/advanced/plugins.html
https://adios2.readthedocs.io/en/latest/engines/engines.html?highlight=inline#inline-for-zero-copy

In-situ Visualization with ADIOS2

Parallel Data Producer

“Plugin”

ParaView Python Script

Visualization Outputs Storage

PASC 2023

<?xml version="1.0"?>

<adios-config>

<io name="SimulationOutput">

<engine type="plugin">

<parameter key="PluginName" value="fides"/>

<parameter key="PluginLibrary"

value="ParaViewADIOSInSituEngine"/>

<!-- ParaViewFides engine parameters -->

<parameter key="DataModel“

value="gs-catalyst-fides.json"/>

<parameter key="Script“

value=“pvParaViewScript.py"/>

</engine>

</io>

Run-time selection for multiple options for Visualization

VTK-m

Visualization script

Parallel Data Consumer

Parallel Data Producer

ParaView Parallel

Visualization

Fides Reader

Post-hoc

visualization

“BP4”“ParaView Plugin”

ParaView Python Script

Visualization Outputs Storage

“SST”
Raw Data Storage

PASC 2023

VTK-m

fides::io::DataSetReader reader("fides.json");

std::unordered_map<std::string, std::string> paths;

paths[source_name] = std::string("gs.bp");

fides::DataSourceParams parms;

parms["engine_type"] = "SST";

reader.SetDataSourceParameters(“source”,
std::move(parms));

vtkm::cont::PartitionedDataSet output =
reader.ReadDataSet(paths, sels);

vtkm::Vec3f origin(3.15, 3.15, 3.15), normal(0., 0., 1.);

vtkm::filter::contour::ClipWithImplicitFunction clip;

clip.SetImplicitFunction(vtkm::Plane(origin, normal));

clip.SetInvertClip(1);

clip.SetFieldsToPass("U");

vtkm::cont::DataSet outputData = clip.Execute(inputData);

ParaView Python

mesh = TrivialProducer(registrationName='fides')

clip = Clip(registrationName="clip1", Input=mesh)

clip.ClipType = 'Plane'

clip.ClipType.Origin = [3.15, 3.15, 3.15]

clip.ClipType.Normal = [0.0, 0.0, 1.0]

clipDisplay = Show(clip)

ColorBy(clipDisplay, ('POINTS', 'U'))

camera = GetActiveCamera()

camera.Roll(-45)

camera.Elevation(-45)

PASC 2023

User-defined visualization programs (pipelines)

Catalyst->ADIOS

A variation on the Catalyst API

Parallel Data Consumer

Parallel Data Producer

“SST”

• Use Catalyst2’s stable ABI

• Replace the Catalyst-ParaView
implementation by a Catalyst-ADIOS
encapsulator (work by the Kitware folks)

• https://gitlab.kitware.com/paraview/adioscatalyst

+
Catalyst->ADIOS Replay

Catalyst->ParaView

PASC 2023

https://gitlab.kitware.com/paraview/adioscatalyst

module load ParaView

module load adios

export

CATALYST_IMPLEMENTATION_NAME=paraview

export

CATALYST_IMPLEMENTATION_PATHS=/paraview-

install/lib64/catalyst

srun AdiosReplay adios2.xml

Catalyst->ADIOS

A variation on the Catalyst API

ParaView Python script

Parallel Data Consumer

Parallel Data Producer

“SST”

module load Catalyst

module load adios

export CATALYST_IMPLEMENTATION_NAME=adios

export

CATALYST_IMPLEMENTATION_PATHS=/users/jfavre/

Projects/InTransit/adioscatalyst/build/lib64/catalyst

srun Data_Producer adios2.xml paraview_script.py

+
Catalyst->ADIOS Replay

Catalyst->ParaView

PASC 2023

Catalyst->ADIOS

A variation on the Catalyst API

ParaView Python script

Parallel Data Consumer

Parallel Data Producer

“SST”

Visualization Outputs Storage

+
Catalyst->ADIOS Replay

Catalyst->ParaView

PASC 2023

Other references

 This is by far not an exhaustive panorama of in-situ/in-transit solutions.

 They are only the ones I have had time to try, and used to instrument some

applications. Quite a bit ParaView, or VTK-m centric

 Look at SENSEI (a generic data interface and a data model) to serve data to Libsim,

Catalyst2, or ADIOS…

 look at the WOIV workshops at ISC, …

PASC 2023

https://sensei-insitu.org/learn-more/software.html

Summary

 Reviewed definitions of post-hoc, in-situ, and in-transit visualization

 Introduced two Conduit-based solutions, enabling

 ParaView Catalyst, or

 Ascent, as filtering and rendering engines.

 Introduced ADIOS and Fides

 Focused on the ADIOS ParaView engine plugin

 Focused on the ADIOS SST engine to drive, either

 A VTK-m visualization and rendering program, or

 A Catalyst Python program for ParaView

 The in-transit concept needs tuning, to properly balance compute and viz resources

PASC 2023

Summary

Simulation

+

Ascent

Actions

+

ParaView

Python scriptsM to M

in-situ

Visualization Outputs

Summary

Simulation

Coupled

app

VTK-m

Dataset

Consumer

Visualization Outputs

ADIOS

Replay

M to N

in-transit

Summary

Simulation

Coupled

app

VTK-m

Dataset

ConsumerADIOS

Replay

M to N

in-transit

M to M

in-situ

Visualization Outputs

+

ParaView

Python scripts

+

Ascent

Actions

Availability

 https://ascent.readthedocs.io/en/latest/QuickStart.html#public-installs-of-ascent

 Ascent, Catalyst, ADIOS + Fides at CSCS on Piz Daint and ALPS pre-system dev

platform

PASC 2023

https://ascent.readthedocs.io/en/latest/QuickStart.html#public-installs-of-ascent

In practice

 https://ascent.readthedocs.io/en/latest/ExampleIntegrations.html

 Link to Gray-Scott Fides demo

 Link to Adios-Catalyst demo

 Link to my in-situ visualization tutorial examples

 Up-coming tutorial:

In-situ Analysis and Visualization with Ascent and ParaView Catalyst,

accepted for presentation at SC23

“Cyrus Harrison, Jean M. Favre, Corey Wetterer-Nelson, Nicole Marsaglia”

PASC 2023

https://ascent.readthedocs.io/en/latest/ExampleIntegrations.html
https://gitlab.kitware.com/vtk/fides/-/tree/master/examples/gray-scott
https://gitlab.kitware.com/paraview/adioscatalyst/-/tree/main/Examples/UnstructuredGrid
https://github.com/jfavre/InSitu-Vis-Tutorial2022/tree/main/Examples

Acknowledgments

 Caitlin Ross, François Mazen, Kitware

 Cyrus Harrison, LLNL

 Hank Childs, U of Oregon

PASC 2023

Thank you for your attention.

