
Experience From Ginkgo
Porting to the SYCL Ecosystem

Yu-Hsiang Tsai1, Terry Cojean1, Tobias Ribizel1, Hartwig Anzt2,1

1Karlsruhe Institute of Technology
2Innovative Computing Laboratory, University of Tennessee

Ginkgo: high-performance open-source cross-platform
C++ sparse linear algebra library

We support several sparse linear algebra components
like different formats: Coo, Csr, Ell, Sellp, Hybrid…
krylov solvers: CG, BiCG, BiCGStab, GMRES, IDR…
preconditioners: BlockJacobi, ParILU/IC, ISAI
batch functionalities and GPU-resident direct solver

https://ginkgo-project.github.io

https://ginkgo-project.github.io

Cross-platform of Ginkgo for easy use

Ginkgo provides the same interface but with native device language

Ginkgo provides the same interface but with native device language

Ginkgo provides the same interface but with native device language

Ginkgo provides the same interface but with native device language

Reduction kernel (CUDA)

8

DPCT result

9

it does not complain but
it is not supported

Difficulties

DPCT will go over all “local” files related to the target files and try converting them

- it may be stuck and lead the failed conversion
- converted code all at once gives headache for review
- DPCT does not handle the failure automatically when we provide the

equalivent codes in SYCL
- DPCT uses nd_item<3>, allocate all shared_memory like dynamic allocation

10

Isolate the code

We extract the neccessary code to outside

treat all other files as the system library such that dpct does not check them

DPCT handles the file in two ways

- “local” file: it automatically traverse all files in the current folder or subfolder

- it will go through and convert the header file.

- “system” file: the files out of current folder

- it only checks the interface, but will not check the implementation

- will not perform any conversion on these file

11

New Issue

If the function is in local file, dpct adds the item_ct1 for us if function needs.
If the function is in system file, dpct does not add the item_ct1

When we put all other files as “system” file, DPCT will not pass the nd_item for the
thread index information.

- If DPCT can convert it without any issue, leave it as local files
- If DPCT can not convert it, we combine the local and system file to provide a

fake interface (and then we can deal it with our own ported codes)

12

Fake Interface - the bridge

local: dpct converts the code and knows how to add the corresponding entries
from SYCL but maybe fails.
system: dpct does not converts the code and only check the interface

DPCT uses the text matching. When the function has the same name as cuda, we
may need to change the function name to avoid dpct change them directly.

13

Fake Interface - the bridge

We can provide an additional fake interface which provides the same interface as
original implementation.

The fake interface only contains a trick: auto tid = threadIdx.x if it needs
nd_item and then pass all arguments to the real implementation.

What dpct see these files?
First, it will see the fake_interface as local file, so it will try to convert the code,
which add the nd_item for us due to the trick.
Then, the real implementation is as system file, so dpct will only check the original
call is matching without touching the code. In the end, we just need to replace the
call with our own sycl code.

14

Fake Interface - the bridge

15

16

Kernel Submission

17

Put the shared memory outside and ValueType
is from call not from template

different favor of the index

static shared memory out of
function

SYCL index vs dim3

SYCL handle index in different way than cuda dim3

dim3(x) -> threadId is contiguous along with threadIdx.x (x-axis)
dim3(x, y) -> threadId is contiguous along with threadIdx.x then threadIdx.y
dim3(x, y, z) -> same: threadId always follows fixed(first) axis first

sycl_range(u) -> threadId is contiguous along with get_local_id(0) (u-axis)
sycl_range(u, v) -> threadId is contiguous along with get_local_id(1) (v-axis)

 then get_local_id(0) (u-axis)
sycl_range(u, v, w) -> threadId always follows the last axis first.

It’s required to change get_local_id index if adding a new axis

Provide dim3 for SYCL

For example, dim3(x, [y, z]) from cuda is converted to sycl_range<3>(z, y, x)

dim3(x) -> sycl_range<3>(1, 1, x)

…

dim3(x, y, z) -> sycl_range<3>(z, y, x)

we can provide our own dim3 for sycl such that we can still use cuda-like way in
SYCL

Fake interface works on not only kernels but also host-cuda functions

19

additional host interface

dpct currently still port the static shared memory to the dynamic way

(it may be good when the static memory allocation is stable)

Also, sycl submit the range and corresponding lambda code.

Using the additional host interface, we can give the similar interface as cuda.

With the sycl dim3,

`kernel(dim3 grid, dim3 block, dynamic shared, queue, args)`

20

device_code_split

DPC++ provides different way to split the device code: per_kernel or
per_source

template <typename VT>
void kernel_1(){}

template <typename VT>
void kernel_2(){}

device_code

: dependency or kernel
essential components

device_code_split

DPC++ provides different way to split the device code: per_kernel or
per_source

template <typename VT>
void kernel_1(){}

template <typename VT>
void kernel_2(){}

kernel_1<double>(){}

kernel_1<float>(){}

kernel_2<int>(){}

kernel_2<int64>(){}

per_kernel

device_code

: dependency or kernel
essential components

per_kernel

Using per_kernel will make each kernel instantiation in different units.

Pro:
- Putting invalid kernel is okay.
- JIT compilation time comes with its own kernel only, so its JIT relatively faster than
per_source
Con:
- Give more complexity to the compiler because each instantiation needs to be complete
- Compilation time is long
- Dependency duplication
- It will make the library big especially for debug build.
The corresponding error is
It will throw relocation truncated to fit: R_X86_64_GOTPCREL.... and PC-relative offset overflows in PLT entry …

The error makes sense because each instantiation is isolated and complete.

device_code_split

DPC++ provides different way to split the device code: per_kernel or
per_source

template <typename VT>
void kernel_1(){}

template <typename VT>
void kernel_2(){}

kernel_1<double>(){}

kernel_1<float>(){}

kernel_2<int>(){}

kernel_2<int64>(){}

kernel_1<double>(){}

kernel_1<float>(){}

kernel_2<int>(){}

kernel_2<int64>{}

per_kernel per_source

device_code

: dependency or kernel
essential components

per_source

Pro:
- Reduce the size of debug library.
- Compile faster than per_kernel.
- Reuse the kernel essential part or dependency

Con:
- All kernel instantiations need to be valid on the device.
- Takes more time on the first kernel of each device source file.

Issue: Too many kernels lead OOM issue on CPU. GPU does not face this issue.
With the Intel team, we already submitted this issue and they are working on it

For example, we have a function which needs to select valuetype, workgroup size,
subgroup size, (virtual) sub-subgroup size. It gives ~360 kernels in one function and
leads this issue.

Devices with varying parameters

CPU can support 4, 8, 16, 32, 64 subgroup size and larger max workgroup size
than 1024.
(32, 64 can be used after one of DPC++ 2021 release.)

GPU can support 8, 16, 32 subgroup size. However, different GPUs support
different max workgroup size like 256, 512.

Gen9 Integrated GPU uses 256 as max workgroup size.
Gen12 Integrated GPU/Gen12LP Discrete GPU use 512 as max workgroup size.

Changes from per_kernel to per_source

Originally, we went for the per_kernel way which instantiated all possible
kernels into Ginkgo library.

However, we faced the too large debug library issue and we need to support the
AOT compilation in the future.

Thus, we need to make subgroup size and workgroup size adjustable such that
we can use the valid configuration for using Ahead of Time(AOT) compilation or
per_source.

SYCL does not support early exit

Any early exit thread in kernels requiring synchronization leads undefined behavior
in SYCL.

{
if (condition) {
 return;
}

// process
__syncthreads();
// process
}

{
if (!condition) {
 // process
}
item_ct1.barrier()
if (!condition) {
 // process
}
}

Enhance maintaince

Performance

Ginkgo gives
better
performance
among 90% of
all suitesparse
real matrices.

if we accept not the
best performance,
ginkgo can solve
almost all problems
within 2x factor

Conclusion

We use the oneAPI ecosystem to prepare Ginkgo for Intel GPUs

Ginkgo provides comprehensive sparse linear algebra support for devices
supporting DPC++/SYCL including intel GPUs.

We use oneAPI to make Ginkgo be a SYCL-available library. We demonstrate our
workaround for some issues on SYCL.

We are looking forward to the addition of the sub-subgroup feature, more oneDPL
funtionality.

Thanks!

32

