
LLNL-PRES-850488
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

The Role of OpenMP in Performance Portability
Bronis R. de Supinski

Chief Technology Officer for Livermore Computing
Chair, OpenMP Language Committee

June 26, 2023

LLNL-PRES-850488
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

A Position Statement on Performance Portability
Bronis R. de Supinski

Chief Technology Officer for Livermore Computing
Chair, OpenMP Language Committee

June 26, 2023

Lawrence Livermore National Laboratory LLNL-PRES-850488 3

What is the easiest way to realize
performance portability?

Lawrence Livermore National Laboratory LLNL-PRES-850488 4

§ Answer: Start with/attempt to achieve poor
performance.

§ Of course, no one intends for “performance
portability” to mean that.

§ So what is “performance portability”?

What is the easiest way to realize
performance portability?

Lawrence Livermore National Laboratory LLNL-PRES-850488 5

§ Consistent strong performance only achieved in
sequential, compiled programs
• One could argue MPI-everywhere can achieve it also
• Except it fails for systems with accelerators

§ Some cite solutions such as Kokkos and RAJA
• Reality is that they reduce how much tuning is required

§ “Ease of performance attainment” is more realistic

Performance portability is a myth

Lawrence Livermore National Laboratory LLNL-PRES-850488 6

§ A compiler that generates good machine code
• But not reliance on the “magic compiler”

§ Mechanisms to guide the compiler
• Provide it information that the programmer knows but would require

complex (or impossible) static analysis
• Dynamic context-dependent specialization
• Low-level control (and interoperability) when needed

§ Mechanisms to specify appropriate parallelization strategies
§ Mechanisms to control use of optimizations
§ Diverse abstraction mechanisms

• The real lesson of Kokkos and RAJA

Some requirements for ease
of performance attainment

Lawrence Livermore National Laboratory LLNL-PRES-850488 7

§ OpenMP is supported by all major compilers
§ OpenMP supports a wide range of parallelization models, devices

• Widely used for shared memory parallelism
— Loop-level support is its most familiar set of features

• Task-based parallelism has been supported for over ten years
• Device constructs (e.g., target) support heterogeneous nodes (and systems)

— Does not assume shared memory è distributed memory parallelism

§ OpenMP allows programmers to be prescriptive when necessary
§ OpenMP is provides interoperability with key mechanisms

• OpenMP is naturally interoperable with MPI
• Mechanisms such as the interop construct to support low-level device languages

OpenMP provides essential features
for large-scale ease of performance

Lawrence Livermore National Laboratory LLNL-PRES-850488 8

§ Optimizations are frequently context specific
• OpenMP metadirective supports appropriate choices

§ OpenMP contexts cover key system and code features
• Enclosing OpenMP regions (e.g., is code encountered in a target region)
• Device or target device architecture and other features
• Implementation-defined contexts
• User-defined contexts

OpenMP metadirective supports
advanced specialization

#pragma omp metadirective \\
 when(device={arch(nvptx},user={condition(Niters<NV_min)}:target teams loop) \\
 when(user={condition(Niters<min)}: target teams distribute parallel loop) \\
 otherwise(target teams distribute parallel for simd num_teams(tcount))
for(i = 0; I < Niters; i++)
 do_work(i);

Lawrence Livermore National Laboratory LLNL-PRES-850488 9

§ OpenMP metadirective is one example
§ OpenMP is adding loop transformation directives to enable standardized

prescriptive control of key compiler optimizations
• OpenMP 5.1 added tile and unroll directives
• OpenMP 6.0 will include reverse and interchange directives (at least)
• The apply clause sill support optimization of transformed code

§ OpenMP assumption directives standardize a common mechanism to guide
compiler optimization

§ Can ensure compiler support for key features with the requires directive
§ OpenMP is now the best starting point for complex autotuning tools

• Standardized infrastructure promises to make these tools more portable
• Past approaches as well as newer AI-based ones could deliver some desired compiler magic

OpenMP is becoming the language in
which to program your compiler

Lawrence Livermore National Laboratory LLNL-PRES-850488 10

§ OpenMP 6.0 will support top-level tasking, which will
simplify efficient resource utilization

§ Is the loop construct useful?

§ Is support needed to use multiple devices on a node?
§ Are Fortran users interested in lambda support?

• OpenMP requires support for outlining and variable capture

§ Other missing features?

What OpenMP extensions would
further ease performance attainment?

#pragma omp loop [clause [[,] clause] …]

