
MS5H	-	Code	Complete	and	More:	Emerging	
Efforts	to	Improve	Software	Quality	(Part	1/2)	
• 11:00	-	11:30	CEST

• The	Role	of	Software	Platforms	in	Supporting	Scientific	Software	Communities
• Michael	A.	Heroux

• 11:30	-	12:00	CEST	
• Finding	Time	through	User	Research
• Hannah	Cohoon,	Kazi	Sinthia	Kabir,	Tamanna	Motahar,	Jason	Wiese

• 12:00	-	12:30	CEST	
• Human	Factors	in	Industrial	Research	Software	Engineering
• Katharina	Dworatzyk,	Tobias	Schlauch

• 12:30	-	13:00	CEST	
• How	Human-Centered	Tools	and	Processes	can	Improve	Software	Development
• Axel	Huebl

1

MS6H	-	Code	Complete	and	More:	Emerging	
Efforts	to	Improve	Software	Quality	(Part	2/2)	
• 14:00	-	14:30	CEST

• Socio-Technical	Resilience	in	Research	Software	Engineering
• Caroline	Jay,	Helen	Sharp,	Tamara	Lopez,	Mark	Levine,	Melanie	Langer,	Michel	
Wermelinger,	Bashar	Nuseibeh,	Yijun	Yu,	Yo	Yehudi

• 14:30	-	15:00	CEST
• Improving	Software	Sharing	and	Impact	through	Software	Registries
• Jason	Maassen,	Maaike	de	Jong

• 15:00	-	15:30	CEST
• Supporting	Software	Sustainability	by	Using	Software	Complexity	Metrics	to	Inform	
Code	Reviews

• James	Willenbring
• 15:30	-	16:00	CEST

• Panel	Discussion
• All	speakers

2

Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

The role of software platforms
in supporting scientific
software communities

Michael A. Heroux

PASC 2023 June 28 - 30, 2023

Exascale Computing Project (ECP)-sponsored libraries and tools, an intro
Software platforms, defined
E4S and SDKs (aka, spokes), as software platforms
Post-ECP, looking forward
Importance of community, final thoughts

Outline

4

ECP Software
Technology (ST)
Focus Area

WBS WBS	Name CAM/PI PC
2.3 Software	Technology Heroux,	Mike,	McInnes,	Lois
2.3.1 Programming	Models	&	Runtimes Thakur,	Rajeev
2.3.1.01 PMR	SDK Shende,	Sameer Shende,	Sameer
2.3.1.07 Exascale	MPI	(MPICH) Guo,	Yanfei Guo,	Yanfei
2.3.1.08 Legion McCormick,	Pat McCormick,	Pat
2.3.1.09 PaRSEC Bosilca,	George Carr,	Earl
2.3.1.14 Pagoda:	UPC++/GASNet	for	Lightweight	Communication	and	Global	Address	Space	Support Hargrove,	Paul Hargrove,	Paul
2.3.1.16 SICM Graham,	Jonathan Turton,	Terry
2.3.1.17 OMPI-X Bernholdt,	David Grundhoffer,	Alicia
2.3.1.18 RAJA/Kokkos Trott,	Christian	Robert Trujillo,	Gabrielle
2.3.1.19 Argo:	Low-level	resource	management	for	the	OS	and	runtime Beckman,	Pete Gupta,	Rinku
2.3.2 Development	Tools Vetter,	Jeff
2.3.2.01 Development	Tools	Software	Development	Kit Miller,	Barton Tim	Haines
2.3.2.06 Exa-PAPI++:	The	Exascale	Performance	Application	Programming	Interface	with	Modern	C++ Anzt,	Hartwig Jagode,	Heike
2.3.2.08 Extending	HPCToolkit	to	Measure	and	Analyze	Code	Performance	on	Exascale	Platforms Mellor-Crummey,	John Meng,	Xiaozhu
2.3.2.10 PROTEAS-TUNE Vetter,	Jeff Winkler,	Amanda
2.3.2.11 SOLLVE:	Scaling	OpenMP	with	LLVm	for	Exascale Chandrasekaran,	Sunita Oryspayev,	Dossay
2.3.2.12 FLANG McCormick,	Pat Perry-Holby,	Alexis
2.3.3 Mathematical	Libraries Li,	Sherry
2.3.3.01 Extreme-scale	Scientific	xSDK	for	ECP Yang,	Ulrike Yang,	Ulrike
2.3.3.06 Preparing	PETSc/TAO	for	Exascale Munson,	Todd Munson,	Todd
2.3.3.07 STRUMPACK/SuperLU/FFTX:	sparse	direct	solvers,	preconditioners,	and	FFT	libraries Li,	Sherry Li,	Sherry
2.3.3.12 Enabling	Time	Integrators	for	Exascale	Through	SUNDIALS/	Hypre Woodward,	Carol Woodward,	Carol
2.3.3.13 CLOVER:	Computational	Libraries	Optimized	Via	Exascale	Research Anzt,	Hartwig Carr,	Earl
2.3.3.14 ALExa:	Accelerated	Libraries	for	Exascale/ForTrilinos Prokopenko,	Andrey Grundhoffer,	Alicia
2.3.3.15 Sake:	Solvers	and	Kernels	for	Exascale Rajamanickam,	Siva Trujillo,	Gabrielle
2.3.4 Data	and	Visualization Ahrens,	James
2.3.4.01 Data	and	Visualization	Software	Development	Kit Atkins,	Chuck Bagha,	Neelam
2.3.4.09 ADIOS	Framework	for	Scientific	Data	on	Exascale	Systems Klasky,	Scott Hornick,	Mike
2.3.4.10 DataLib:	Data	Libraries	and	Services	Enabling	Exascale	Science Ross,	Rob Ross,	Rob
2.3.4.13 ECP/VTK-m Moreland,	Kenneth Moreland,	Kenneth
2.3.4.14 VeloC:	Very	Low	Overhead	Transparent	Multilevel	Checkpoint/Restart/Sz Cappello,	Franck Ehling,	Scott
2.3.4.15 ExaIO	-	Delivering	Efficient	Parallel	I/O	on	Exascale	Computing	Systems	with	HDF5	and	Unify Byna,	Suren Bagha,	Neelam
2.3.4.16 ALPINE:	Algorithms	and	Infrastructure	for	In	Situ	Visualization	and	Analysis/ZFP Ahrens,	James Turton,	Terry
2.3.5 Software	Ecosystem	and	Delivery Munson,	Todd
2.3.5.01 Software	Ecosystem	and	Delivery	Software	Development	Kit Willenbring,	James	M Willenbring,	James	M
2.3.5.09 SW	Packaging	Technologies Gamblin,	Todd Gamblin,	Todd
2.3.5.10 ExaWorks Laney,	Dan Laney,	Dan
2.3.6 NNSA	ST Mohror,	Kathryn
2.3.6.01 LANL	ATDM Tim	Randles Montoya,	RoseMary
2.3.6.02 LLNL		ATDM Becky	Springmeyer Gamblin,	Todd
2.3.6.03 SNL	ATDM Jim	Stewart Trujillo,	Gabrielle

ECP ST Stats

- 250 staff
- 70 products
- 35 L4 subprojects
- 30 universities
- 9 DOE labs
- 6 technical areas
- 1 of 3 ECP focus areas
- ~$500M total budget

5

A Sampler of Products

No two project alike
Some personality driven
Some community driven
Small, medium, large

ECP Software Technology works on products that apps need now and in the future

Example Products Engagement

MPI – Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards

OpenMP/OpenACC –On-node parallelism Explore/develop new features and standards

Performance Portability Libraries Lightweight APIs for compile-time polymorphisms

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies

IO: HDF5, MPI-IO, ADIOS Standard and next-gen IO, leveraging non-volatile storage

Viz/Data Analysis ParaView-related product development, node concurrency

Key themes:
• Focus: GPU node architectures and advanced memory & storage technologies
• Create: New high-concurrency, latency tolerant algorithms
• Develop: New portable (Nvidia, Intel, AMD GPUs) software product
• Enable: Access and use via standard APIs
Software categories:
• Next generation established products: Widely used HPC products (e.g., MPICH, OpenMPI, PETSc)
• Robust emerging products: Address key new requirements (e.g., Kokkos, RA JA, Spack)
• New products: Enable exploration of emerging HPC requirements (e.g., SICM, zfp, UnifyCR)

Legacy: A stack that
enables performance
portable application
development CPU, GPU
and related platforms,
now and in the future

7

13

7

10

7

40

11

17

31

7 7

32

5

10

8

6

15

8

5

0

4

10

13 13

20

16

13

5

8

11

77

15

0

6

19

3

9

11

6

1

7

11

12

8

0

5

2

5

0

1

4

2

4

0

21

3

5

24

4

3

11

3

5

3

10

2

11

9

2

0

7

5

6

11

3

4

2

1

3 3

9

1

4

3

2

6

1

8

4

2

THE NUMBER OF ECP SOFTWARE TECHNOLOGY PROJECT DEPENDENCIES
FOR EACH ECP APPLICATION PROJECT (ANONYMIZED)

Critical Important Interested

1				2					3	…																																																																																																															 …	30																																																
Application	Project	(Anonymized)

Total Avg Max
Critical 359 12.0 40

Important 198 6.6 24
Interest 141 4.7 11

8

Takeaways from product sampler

Wide range of products and teams: libs, tools, small personality-driven, large community-driven

Varied user base and maturity: widely used, new, emerging

Variety of destinations: direct-to-user, facilities, community stacks, vendors, facilities, combo of these

Wide range of dev practices and workflows: informal to formal

Wide range of tools: GitHub, GitLab, Doxygen, Readthedocs, CMake, autotools, etc.

Question at this point might (should?) be:
o Why are you trying to make a portfolio from this eclectic assortment of products?

Answer:
o Each product team charged with challenging tasks:
o Provide capabilities for next-generation leadership platforms
o Address increasing software quality expectations

o While independently developed, product compatibility and complementarity improvements matter

o Working together on these frontiers is better than going alone

Software Platforms: “Working in Public” Nadia Eghbal

Platforms in the software world are digital environments
that intend to improve the value, reduce the cost, and
accelerate the progress of the people and teams who use
them
Platforms can provide tools, workflows, frameworks, and
cultures that provide a (net) gain for those who engage

Eghbal Platforms:

Eghbal, Nadia. Working in Public: The Making and Maintenance of Open Source Software (p. 60). Stripe Press. Kindle Edition.

10

About Platforms and ECP

ECP is commissioned to
•Provide new scientific software capabilities
•On the frontiers of apps, algorithms, software and hardware

ECP provides two platforms to foster collaboration and cooperation
as we head into the frontier:

• E4S: a comprehensive portfolio of HPC products and dependencies
• *SDKs: Domain-specific collaborative and aggregate product suites

E4S and SDKs are:
• novel meta-organizational structures (software platforms) that

• enable the coordinated development and delivery of capabilities for
• 70 software products on HPC systems,

• especially leadership platforms

11
*In post-ECP discussions, we are proposing a “hub-and-spoke” model. SDKs are “spokes”

Delivering an open, hierarchical software ecosystem
More than a collection of individual products

E4S
Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

SDKs Source: SDK teams; Non-ECP teams (policy compliant, spackified)
Delivery: Apps directly; spack install sdk; future: vendor/facility

ST Products Source: ECP L4 teams; Non-ECP Developers; Standards Groups
Delivery: Apps directly; spack; vendor stack; facility stack

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external

products

• Build all SDKs
• Build complete stack
• Assure core policies
• Build, integrate, test

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products 12

Extreme-scale Scientific Software Stack (E4S)
• E4S: HPC software ecosystem – a curated software portfolio
• A Spack-based distribution of software tested for interoperability

and portability to multiple architectures
• Available from source, containers, cloud, binary caches
• Leverages and enhances SDK interoperability thrust
• Not a commercial product – an open resource for all
• Growing functionality: May 2023: E4S 23.05 – 100+ full release products

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://spack.io
Spack lead: Todd Gamblin (LLNL)

Community Policies
Commitment to SW quality

DocPortal
Single portal to all
E4S product info

Portfolio testing
Especially leadership

platforms

Curated collection
The end of dependency hell

Quarterly releases
Release 23.2 – February

Build caches
10X build time
improvement

Turnkey stack
A new user experience https://e4s.io Post-ECP Strategy

PESO, LSSw

13

https://e4s.io/
https://spack.io/
https://e4s.io/

Policies: Version 1
https://e4s-project.github.io/policies.html

• P1: Spack-based Build and Installation

• P2: Minimal Validation Testing

• P3: Sustainability

• P4: Documentation

• P5: Product Metadata

• P6: Public Repository

• P7: Imported Software

• P8: Error Handling

• P9: Test Suite

E4S Community Policies: A commitment to quality improvement

Enhance sustainability and
interoperability
Serve as membership criteria for E4S
o Membership is not required for inclusion in E4S

o Also includes forward-looking draft policies

Modeled after xSDK community policies
Multi-year effort led by SDK team
o Included representation from across ST

o Multiple rounds of feedback incorporated from ST
leadership and membership

SDK lead: Jim Willenbring (SNL)

https://e4s-project.github.io/policies.html

Spack

• E4S uses the Spack package manager for software delivery
• Spack provides the ability to specify versions of software packages that are and are not

interoperable
• Spack is a build layer for not only E4S software, but also a large collection of software tools

and libraries outside of ECP ST
• Spack supports achieving and maintaining interoperability between ST software packages
• https://spack.io

https://spack.io/

Prep system for ECP libs & tools
Access to latest non-NDA HW/SW
Shared file system – 1 copy of SW
Port to many device types at once
Porting support from E4S team
CI testing workhorse (500K builds)
Next: Bare metal, BIOS-changing support
for low-level software work

Frank – Designed for
Libs & Tools Developers

E4S Business Model: Optimize Cost & Benefit Sharing

Industry and
Other Agency

Users

DOE E4S Team

DOE E4S Team enables a portfolio approach
• Integrated delivery/support of libs/tools
• Single POC for planning and issues

Commercial
E4S Team

Close interaction
• DOE team in charge of strategy/policy
• Commercial team handles support

First of a kind interactions
• Industry/agencies can acquire support
• Shared costs and benefits with DOE

E4S Phase Cost &
Benefit Scope

Pre-E4S Local Facility

ECP support DOE complex

+ Commercial
support

Universal

App teams and facilities support
staff port and debug app code

Facilities support staff have difficulty finding support
from library/tool teams except from local teams

Non-DOE users find it very difficult to use DOE
libraries and tools; no support beyond basic usage

App teams work with
library/tool teams they
know, mostly local

DOE App
Developers and
Facilities Users

DOE Library
and Tool

Developers

DOE Facilities
User Support

Staff

Commercial E4S Support Essential for non-DOE Users
Provides vehicle for sustainable non-DOE user support

Support Phase Primary Scope Primary Cost and Benefit Sharing Opportunities

Pre-E4S Local facility Local costs and benefits: Prior to ECP and E4S, libraries and tools were
typically strongly connected to the local facility: ANL libs and tools at
ALCF, LBL at NERSC, LLNL at Livermore Computing, etc.

+ ECP E4S All DOE facilities DOE complex-shared costs and benefits: ECP requires, and E4S
enables, interfacility availability and use of libs across all facilities: First-
class support of ANL libs and tools at other facilities, etc.

+ Commercial
 E4S

DOE facilities,
other US
agencies,
industry, and
more

Universal shared costs and benefits: Commercial support of E4S
expands cost and benefit sharing to non-DOE entities: DOE costs are
lower, software hardening more rapid. US agencies, industry and
others can contract for support, gaining sustainable use of E4S
software and contributing to its overall support.

E4S 23.05: What’s New?

• E4S includes support for Intel oneAPI 2023.1 software (BaseKit and HPCToolkit) in containers on x86_64 with support for
HPC packages built with Intel compilers

• E4S includes support for CUDA architectures

• 70 (V100), 80 (A100), and 90 (H100) under x86_64

• 70 under ppc64, and

• 75 and 80 under aarch64

• E4S includes supports ROCm for gfx908 (MI100) and gfx90a (MI200) architectures under x86_64

• E4S includes support for DOE LLVM under x86_64, ppc64le, and aarch64

• E4S includes new applications: Xyce (with pymi), LBANN, Quantum Espresso, LAMMPS, WARPX, Deal.ii, and OpenFOAM.

• E4S includes support for AI/ML frameworks such as TensorFlow and PyTorch support for A100 as well as H100 GPUs is
integrated in E4S 23.05

• E4S supports updates to 100+ HPC packages on x86_64, aarch64, and ppc64le, 100K+ binaries in E4S Spack Build Cache

• New E4S tools: e4s-alc (à la carte) customizes container images, e4s-cl (container launch) replaces MPI at runtime!

• Detailed documentation for installing E4S on bare-metal and using containers

E4S Engagements: DOE, Other US Agencies

DOE:
• NERSC, OLCF, ALCF – Active porting on leadership, exascale platforms
• Multiple ECP apps: ExaWind, WDPApp, Cinema
• Emerging Sandia effort: Xyce on E4S on AWS for a summer class

NSF:
• E4S installed on Frontera, TACC; Bridges-2, PSC; BlueWaters, NCSA; Expanse, SDSC
• SDSC: E4S Singularity containers available on Open Science Grid High Throughput Computing (https://OSG-HTC.org)

NOAA:

• E4S base images being used in production on AWS and in custom containers.

DoD:
• Testing installation of E4S on Narwhal, Navy DSRC

NASA:

• Singularity support for E4S on Pleiades

• Custom E4S images exploration

• Visit to NASA Ames on April 11, 2023

20

https://osg-htc.org/

E4S Engagements: International

• CEA, France: E4S engagement discussed with CEA
• Workshop planned in July 2023 with ParaTools, SAS

• CSC, Finland: Lumi Supercomputer
• E4S Workshop in March 2023

• https://ssl.eventilla.com/event/WL761

• E4S 23.05 installed on Lumi

• Pawsey Supercomputing Center, Perth, Western Australia
• E4S workshop planned in April 2023

• https://pawsey.org.au/event/evaluate-application-performance-using-tau-and-e4s-april-4-5/

• E4S 23.05 installed on Setonix

21

• E4S provides a large stack of reusable software libraries and tools
• Build from scratch using Spack, or use via containers, cloud, build caches
• Includes Trilinos, Kokkos: building blocks for many Sandia codes
• Makes stack management easier, portable, lower cost
• Promises to reduces complexity for higher-level analysis tools (Teresa’s talk)

https://ssl.eventilla.com/event/WL761
https://pawsey.org.au/event/evaluate-application-performance-using-tau-and-e4s-april-4-5/

Steady Stream of E4S to
ALL DOE Science Facilities!

E4S	
community	
policies

Product	establishes:
1. Spack-based	package	and	build
2. Validation	testing	in	E4S	testsuite
3. Documentation	for	install	and	use
4. Accessible	public	repository

• E4S	establishes	install	at	facilities
• E4S	packages	get	tested	and	

validated	in	facility	environment
• New	E4S	releases	automatically	

tested	through	ECP	CI	
infrastructure

ST	Development	
Team

ST	Development	Team	
works	any	issues	reported

• High-quality	Spack	recipes,	for	
ECP	products,	ready	for	facility	
systems

• Software	Integration	team	
integrates	packages	into	
facility	system

• New	E4S	release	up-streamed	
and	support	requests	from	
facility	generated	as	needed

• Issues/Fixes/changes	worked	
with	developers	as	needed

PHASE	I

PHASE	II

FEEDBACK	PHASE

OUTPUT

Facility Software Integration
• Not all E4S products can be

maintained by facility staff (there
are a lot!)

• User requests drive facility priorities
• Compatibility and maintainability,

with facility environments, are
essential

• Red area depicts area of focus from
perspective of software integration
staff at facilities

• ‘Level 2’ Support from ParaTools
helps!

Final Thoughts on E4S
Does E4S contain too much?
oYes, few people use everything

Does E4S not contain enough?
oYes, most serious users include more products via Spack

Is E4S ported to and tested on too many configurations?
oYes, most users need only a few

Is E4S not ported to and tested on enough configurations?
oYes, almost everyone needs to tweak it for their environment

Is E4s useful?
oA big yes

For almost all users,
oThe gap between what they want and what E4S is can be addressed through incremental efforts
oThe stable E4S suite available on many platforms enables “better, faster, cheaper, pick all 3”

PESO:	Toward	a	Post-ECP	Software-
Sustainability	Organization

• Michael	Heroux	(Sandia	National	Laboratories;	PI)

• James	Ahrens	(Los	Alamos	National	Laboratory)

• Todd	Gamblin	(Lawrence	Livermore	National	Laboratory)

• Timothy	Germann	(Los	Alamos	National	Laboratory)

• Xiaoye	Sherry	Li	(Lawrence	Berkeley	National	Laboratory)

• Lois	Curfman	McInnes	(Argonne	National	Laboratory)

• Kathryn	Mohror	(Lawrence	Livermore	National	Laboratory)

• Todd	Munson	(Argonne	National	Laboratory)

• Sameer	Shende	(University	of	Oregon)

• Rajeev	Thakur	(Argonne	National	Laboratory)

• Jeffrey	Vetter	(Oak	Ridge	National	Laboratory)

• James	Willenbring	(Sandia	National	Laboratories)

	 https://pesoproject.org	

25

https://pesoproject.org/

PESO	Project	Hub-and-Spoke	Model
PESO	will

• Serve	as	a	hub	for	software-ecosystem	sustainment	efforts	for	DOE’s	open-
source	libraries	and	tools	for	advanced	scientific	computing	

• Work	with	spokes	(groups	of	software	project	teams)	to	coordinate	
development	activities	for	long-term	sustainability	and	benefit	to	stakeholders

• Work	with	communities	of	practice	(COPs)	
• To	provide	cross-cutting	services	and	support	that	are	broadly	needed	by	developers,	

users,	and	stakeholders

• Realize	the	full	potential	of	DOE	investments	in	the	scientific	libraries	and	tools	
ecosystem:
• By	taking	a	broad,	strategic	view
• Through	project	growth,	improved	software	quality	and	availability,	and	sustainable	

delivery,	deployment,	and	support.
• Realizing	the	100X	potential	enabled	by	ECP	investments

26

PESO	Proposed	Organization	Strategy

27

Product	Team	1
Budget	&	Work	Specific	to	product

Product	Team	2
Budget	&	Work	Specific	to	product

Product	Team	3
Budget	&	Work	Specific	to	product

Product	Team	3
Budget	&	Work	Specific	to	product

Software	Product	
Community	1

Budget	&	Work	best	done	at	the	
product	community	level	–	Design	

space	exploration,	tutorials,	
architecture	reviews,	API	

standardization

Software	Product	
Community	2

Budget	&	Work	best	done	at	the	
community	level	–	Design	space	

exploration,	tutorials,	architecture	
reviews,	API	standardization

Hub
Budget	&	Work	best	done	at	the	global	
level	–	Software	stack,	integrated	CI,	
annual	meeting,	coordination	across	
communities,	labs,	communities	of	

practice	activities

• A	lot	of	work	is	best	done	at	the	
individual	product	team	level

• Everyday	development	work

• Delivery	of	capabilities	that	
contribute	part	of	the	whole

• Testing	and	product	improvement

• Some	work	is	best	done	at	a	product	
community	level:

• Portfolio	planning,	coordination

• Holistic	tutorial	delivery

• Design	space	exploration	for	next-
gen	platforms

• Some	work	is	best	done	at	hub	level:
• Software	stack	management

• Specialized	CI	testing

• All-team	meetings

• Coordinated	planning	across	
portfolio

• Community	of	practice	activities:	
working	with	software	foundations,	
improving	software	skills,	
community	engagement

Key	goals:

• Put	budget	and	work	at	the	level	where	it	
can	be	done	better,	faster,	and	cheaper	
than	elsewhere

• Coordinate	across	levels	with	the	goal	to	
serve	product	teams,	users,	sponsors

• Deliver	a	trustworthy	software	ecosystem

It Takes a
Community

Use of narrow metrics, e.g., pub count, impact factor, leads to poor results
Furthermore, successful teams under these metrics train the next generation
Who build their own teams, further propagating poor results

Conclusion: Progress requires change at institutional [community] level

The Natural Selection of Bad Science – or why we need communities

Smaldino, Paul E. and McElreath, Richard, 2016, The natural selection of bad science, R. Soc.
open sci.3160384160384 http://doi.org/10.1098/rsos.160384

Other McElreath work (good stuff):

Research as Amateur Software Development: https://youtu.be/zwRdO9_GGhY

Science is Like a Chicken Coop: https://youtu.be/d8LqFO1dk-w
29

http://doi.org/10.1098/rsos.160384
https://youtu.be/zwRdO9_GGhY
https://youtu.be/d8LqFO1dk-w

IDEAS – First ASCR-funded productivity and sustainability project
Foundation for establishing communities, and capabilities for the past 9 years

IDEAS (Classic)

IDEAS-ECP
Productivity

BSSw.io

BSSw
Fellowship

PSIP, HPC BP
webinars, CAT

xSDK-ECP
Math Libs

E4S

SDKs

30

Elevating trust is fundamentally a community activity
Risky for single team to invest heavily – costs higher, pub rate lower
IDEAS Project focused on cross-lab and partners collaboration
The IDEAS legacy within DOE is community-based R&D
We plan to continue with this approach going forward

Building Community Takeaways

31

Takeaway Points

The US Exascale Computing Project has enabled a holistic community approach
to developing and delivering scientific software

The organizational elements of SDKs (product communities or “spokes”) and E4S
(curated stack) enable fundamentally new relationships in the scientific
computing community

Agency, international, and industry partners can now play a larger role in
delivering and supporting US DOE software

The broad impact of these community solutions is unconstrained cost and
benefit sharing in the development and use of our software libraries and tools

32

