
Simon Byrne
CliMA project @ Caltech

Julia with MPI
Challenges and Best Practices

Who am I?
And what am I doing here?

• About Me:

• Lead software engineer on the CliMA project @ Caltech

• Building a GPU + MPI climate model in Julia

• Contributor to the Julia language and packages since 2012

• A primary maintainer of MPI.jl and NVTX.jl

• Why this talk?

• Julia is great for scientific computing, but…

• There are some pitfalls which may not be obvious

Overview

1. Configuring Julia on a HPC system

2. MPI.jl

3. Profiling parallel Julia code with Nsight Systems

4. Julia + MPI pitfalls

Getting started
Configuring Julia for HPC

Installing Julia
The easy part

• Download the binaries from julialang.org

• Don’t build from source, or use distribution-provided binaries

• Especially don’t try to link against existing dependencies on the system

• Julia includes quite a few patches for some of these (LLVM, libuv)

• Building from source won’t enable any magic optimizations

• Julia has its own compiler for that

• Plays nice with cluster module files

http://julialang.org

Some helpful environment variables
Getting the most out of your system

• JULIA_DEPOT_PATH

• Where Julia stores packages, artifacts, precompilation caches, etc

• Default is ~/.julia

• Make sure it is on a fast disk (not NFS)

• Can specify multiple (helpful for caching artifacts across users)

• JULIA_CPU_TARGET (Julia 1.9+)

• Julia now caches native code: specify the microarchitecture to use

• Can specify multiple targets (helpful on a heterogeneous cluster)

• export JULIA_CPU_TARGET='broadwell;skylake'

Configuring packages: the new way
Preferences.jl

• Old Pkg.build() scripts are now discouraged

• Preferences: per-package key-value store

• @load_preference(key, default_value)

• @set_preferences!(key => value)

• Stored per project (LocalPreferences.toml or Project.toml)

• Used as part of the precompilation hash

• Specific to a given project

• Correctly invalidate the cache on changes

• Can be used to define constant variables

Configuring binary dependencies
Overriding your JLLs

• Julia package manager provides binary dependencies
through its artifact system

• Built using BinaryBuilder.jl cross-compilation
framework

• Windows/Mac/Linux, on x86/ARM/PPC

• Can be used to override JLL binaries

• Need to be careful: typically you will need to
override all downstream dependencies

• Inherited from LOAD_PATH

• Modify preferences for the current session

• Can integrate with cluster module files

/config/path/Project.toml
[extras]
HDF5_jll = "0234f1f7-429e-5d53-9886-15a909be8d59"

[preferences.HDF5_jll]
libhdf5_path = "libhdf5"
libhdf5_hl_path = "libhdf5_hl"

export JULIA_LOAD_PATH=\
"$JULIA_LOAD_PATH:/config/path"

MPI.jl
Julia interface for MPI

MPI.jl basics
• Automatically determines array datatype and length

• Integration with Julia’s exception handling

• Custom structs, strided arrays => generate custom
datatypes

• Julia functions => generate custom reduction
operators

• Covers most used MPI functions

• Point-to-point, collectives, one-sided, I/O

• Easy to add more: please open an issue!

• Supports GPU-aware MPI interfaces

• Simply pass CuArray/ROCArray as a buffer

• Used by multiple Julia packages

Custom datatype
struct SummaryStat
 mean::Float64
 var::Float64
 n::Float64
end

function SummaryStat(X::AbstractArray)
 m = mean(X)
 v = varm(X,m,corrected=false)
 n = length(X)
 SummaryStat(m,v,n)
end

Custom reduction operator
pools the mean, variance, length
more numerically stable than sum-of-squares
function pool(S1::SummaryStat, S2::SummaryStat)
 n = S1.n + S2.n
 m = (S1.mean*S1.n + S2.mean*S2.n) / n
 v = (S1.n*(S1.var + S1.mean*(S1.mean-m)) +
 S2.n*(S2.var + S2.mean*(S2.mean-m)))/n
 SummaryStat(m,v,n)
end

Perform reduction
summ = MPI.Reduce(SummaryStat(X), pool, comm)

Configuring MPI for Julia

• By default, MPI.jl uses a JLL-built binary

• MicrosoftMPI_jll on Windows, MPICH_jll everywhere else

• Many downstream binaries (e.g. HDF5, ADIOS2, PETSc)

• For HPC: typically want to use the binary for that system

• Support for specific network hardware and libraries

• Integration with system launcher (srun, aprun)

• Direct device-device communication (CUDA-aware)

• Problem: MPI application binary interface (ABI) is implementation-defined

• Handles (e.g. MPI_Comm) can be an int or a pointer

• Constants (e.g. MPI_ANY_SOURCE) values vary

• May be fixed in MPI 5 🤞

MPIPreferences.jl
Two options

• MPIPreferences.use_system_binary()

• Detects and configures ABI

• Uses system binary directly

• Need to override all downstream binaries

• MPIPreferences.use_jll_binary("MPItrampoline")

• Uses MPItrampoline by Erik Schnetter

• Requires building a shim (MPIwrapper) around your MPI library

• Some operations can incur overhead (e.g. MPI_Waitall)

• Downstream JLL binaries “just work”

MPI.jl tips
How to use it efficiently
• Use uppercase functions (MPI.Send/MPI.Recv) where possible

• Requires both sender & receiver to know datatype & length

• Minimal overhead vs C

• Lowercase functions (MPI.send/MPI.recv) serialize &
deserialize

• More flexible (e.g. strings, mutable objects), but slower

• Pre-allocate output arrays

• Use MPI.Reduce! instead of MPI.Reduce

• Define MPI.Buffer(array) wrapper outside loop/function

• Important when using custom datatypes (e.g. SubArrays)

• Learn how to make your launcher output ranks to individual files

• Interleaved error stacks are difficult!

• Profile, profile, profile

Parallel profiling of Julia code

Nsight Systems + NVTX.jl

• Nsight Systems is an instrumenting profiler from Nvidia

• Profiler supports Linux & Windows

• Viewer for Linux, Windows and MacOS

• Supports multithreading and MPI

• Does not require a GPU (can be used for CPU-only code)

• NVTX.jl package for instrumenting Julia code

• Annotate Julia code with macros which the profiler can then access

• Options to instrument the Julia garbage collector

• Safe to include as a package dependency (becomes a no-op if not using the profiler)

NVTX.jl basics
Annotating Julia code

• Basic macros

• NVTX.@mark: Instruments an instantaneous event

• NVTX.@range expr: Instruments a code block with a
range

• NVTX.@annotate function … end: Instruments a
function definition with a range

• Can attach metadata to each of these

• domain (default: current Julia module)

• message (default: [function name] file:lineno)

• color: (default: generate unique)

• payload: a single integer or float value

• category: enum value

module CustomModule

using NVTX

NVTX.@annotate function dostuff(i)
 sleep(1)
end

NVTX.@range "A loop" begin
 Threads.@threads for i = 1:5
 dostuff(i)
 end
end

end

Simple example
nsys profile --trace=nvtx julia example.jl

• Can also be invoked from the Julia REPL

Nsight + MPI
Profiling parallel Julia code

• Instruments common MPI operations using MPI profiling interface

• Can be used in two ways

• profiler - launcher - program

• nsys profile <nsys-args> mpiexec <mpi-args> julia …

• Generates single profile

• Only works if all processes are on the same node

• launcher - profiler - program

• mpiexec <mpi-args> nsys profile <nsys-args> julia …

• Generates a profile per rank

• Can be opened as a “multi-profile view”

• Profiler itself has overhead

• Recommend allocating additional CPU core per profiler instance + launch with core binding

More on profiling

• Alternatives:

• Score-P/ScoreP.jl (https://github.com/JuliaPerf/ScoreP.jl) by Carsten Bauer

• Intel VTune/IntelITT.jl (https://github.com/JuliaPerf/IntelITT.jl) by Valentin Churavy

• Recent effort at instrumenting the Julia runtime

• Compilation, task switching, etc.

• Requires a custom build of Julia

• Currently supports Tracy & Intel ITT

• Future work

• Develop a common instrumentation API

https://github.com/JuliaPerf/ScoreP.jl
https://github.com/JuliaPerf/IntelITT.jl

Julia + MPI Pitfalls
My Julia HPC gripes

1. MPI library quirks
Every MPI implementation is weird in its own way

• MPI libraries do lots of weird things

• Intercept signals, malloc, dynamic libraries

• GPU-aware interfaces make everything worse

• Julia is good at triggering these issues

• ccall uses dlopen, multithreaded runtime

• Can often be worked around (e.g. with environment variables)

• See https://juliaparallel.org/MPI.jl/stable/knownissues/

• MPI launchers have poor support for interactivity

• No parallel Julia REPL 😦

https://juliaparallel.org/MPI.jl/stable/knownissues/

2. Shared file system woes
• Performance issues

• User home directories are mounted via NFS: set your depot to be on a fast disk

• DDOS-ing your parallel file system metadata server: system images, containers, scratch partitions

• Incompatibilities

• Typically don’t allow memory mapping (mmap): JLD2.jl, use jldopen(… ; iotype=IOStream)

• Race conditions: multiple processes/multiple jobs trying to write at the same time

• e.g. Pkg operations, precompilation, artifact downloading

• Recommend Pkg.instantiate() on a singleton process

• Use a clean depot on top (see DepotCompactor.jl)

• Disk usage: on systems with low limits

• Use a shared depot of Julia artifacts

3. Compilation complaints

• JIT for HPC is extremely powerful

• Benefits: generating specialized code for your particular problem (especially for GPU)

• Downside: compiling specialized code for your particular problem

• Much recent work compiler work on reducing latency

• Time-to-first-X (TTFX)

• Critical to avoid method invalidations

• SnoopCompile.jl and related tools

• Native code caching (system images, pkgimages on Julia 1.9)

• Complicated on a heterogeneous cluster

• Caching for GPU kernels a work-in-progress

4. MPI + GC
• All other processes stuck waiting on a process calling the GC

• More MPI ranks => higher probability of a rank invoking GC

• Consider an iteration of compute + all-to-all communication

• = time per iteration without GC (assume perfect scaling)

• = time per GC pause

• = probability of GC invocation per iteration on each processor

• Assuming each processor independent

• = number of processes

• Average time per iteration

• Single process:

• Weak scaling regime:

• Strong scaling regime:

t

g

p

n

t + gp

t + g(1 − (1 − p)n)
t
n

+ g(1 − (1 − p)n)

Weak scaling

Strong scaling

10 100 1000 104
n

0.2

0.4

0.6

0.8

1.0

Scaling efficiency

p =
1

1000
, t = 20 ms, g = 400 ms

Identifying the problem
Profiling the Julia Garbage Collector

• Load NVTX.jl, set
JULIA_NVTX_CALLBACKS=gc

• Activates a hook into the Julia
garbage collector

• Look for ranks blocking on MPI
operations

What can be done?

1. Reduce memory allocations wherever possible

• A good idea anyway!

• See Julia docs on memory allocation profiling

• Not always possible to eliminate entirely: many small memory allocations

• e.g. CUDA kernel launches, saving output, log printing

2. Disable the garbage collector: GC.enable(false)

• Feasible once allocations are sufficiently small

3. Synchronize calling GC on all processes

• Manually call GC.gc() at set intervals

• Requires tuning heuristics for a particular workload

Summary

Summary

• Julia is a very powerful language for scientific computing

• Fast, expressive, multithreading, cross-platform, excellent GPU support

• Easy-to-use MPI support

• But you need to develop a good understanding of the runtime

• You can only optimize what you can measure

• Profiling is essential

• Julia HPC has a great community

• Slack

• Discourse

• JuliaHPC monthly call

