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Who am I?
And what am I doing here?

• About Me:


• Lead software engineer on the CliMA project @ Caltech


• Building a GPU + MPI climate model in Julia


• Contributor to the Julia language and packages since 2012


• A primary maintainer of MPI.jl and NVTX.jl


• Why this talk?


• Julia is great for scientific computing, but…


• There are some pitfalls which may not be obvious



Overview

1. Configuring Julia on a HPC system


2. MPI.jl


3. Profiling parallel Julia code with Nsight Systems


4. Julia + MPI pitfalls



Getting started
Configuring Julia for HPC



Installing Julia
The easy part

• Download the binaries from julialang.org


• Don’t build from source, or use distribution-provided binaries


• Especially don’t try to link against existing dependencies on the system


• Julia includes quite a few patches for some of these (LLVM, libuv)


• Building from source won’t enable any magic optimizations


• Julia has its own compiler for that


• Plays nice with cluster module files

http://julialang.org


Some helpful environment variables
Getting the most out of your system

• JULIA_DEPOT_PATH


• Where Julia stores packages, artifacts, precompilation caches, etc


• Default is ~/.julia


• Make sure it is on a fast disk (not NFS)


• Can specify multiple (helpful for caching artifacts across users)


• JULIA_CPU_TARGET (Julia 1.9+)


• Julia now caches native code: specify the microarchitecture to use


• Can specify multiple targets (helpful on a heterogeneous cluster)


• export JULIA_CPU_TARGET='broadwell;skylake'



Configuring packages: the new way
Preferences.jl

• Old Pkg.build() scripts are now discouraged


• Preferences: per-package key-value store


• @load_preference(key, default_value) 


• @set_preferences!(key => value)


• Stored per project (LocalPreferences.toml or Project.toml)


• Used as part of the precompilation hash


• Specific to a given project


• Correctly invalidate the cache on changes


• Can be used to define constant variables



Configuring binary dependencies 
Overriding your JLLs

• Julia package manager provides binary dependencies 
through its artifact system


• Built using BinaryBuilder.jl cross-compilation 
framework


• Windows/Mac/Linux, on x86/ARM/PPC


• Can be used to override JLL binaries


• Need to be careful: typically you will need to 
override all downstream dependencies


• Inherited from LOAD_PATH


• Modify preferences for the current session


• Can integrate with cluster module files

# /config/path/Project.toml

[extras]

HDF5_jll = "0234f1f7-429e-5d53-9886-15a909be8d59"


[preferences.HDF5_jll]

libhdf5_path = "libhdf5"

libhdf5_hl_path = "libhdf5_hl"

export JULIA_LOAD_PATH=\

"$JULIA_LOAD_PATH:/config/path"



MPI.jl
Julia interface for MPI



MPI.jl basics
• Automatically determines array datatype and length


• Integration with Julia’s exception handling


• Custom structs, strided arrays => generate custom 
datatypes


• Julia functions => generate custom reduction 
operators


• Covers most used MPI functions


• Point-to-point, collectives, one-sided, I/O


• Easy to add more: please open an issue!


• Supports GPU-aware MPI interfaces


• Simply pass CuArray/ROCArray as a buffer


• Used by multiple Julia packages

# Custom datatype

struct SummaryStat

    mean::Float64

    var::Float64

    n::Float64

end


function SummaryStat(X::AbstractArray)

    m = mean(X)

    v = varm(X,m,corrected=false)

    n = length(X)

    SummaryStat(m,v,n)

end


# Custom reduction operator

# pools the mean, variance, length

# more numerically stable than sum-of-squares

function pool(S1::SummaryStat, S2::SummaryStat)

    n = S1.n + S2.n

    m = (S1.mean*S1.n + S2.mean*S2.n) / n

    v = (S1.n*(S1.var + S1.mean*(S1.mean-m)) +

         S2.n*(S2.var + S2.mean*(S2.mean-m)))/n

    SummaryStat(m,v,n)

end


# Perform reduction

summ = MPI.Reduce(SummaryStat(X), pool, comm)



Configuring MPI for Julia

• By default, MPI.jl uses a JLL-built binary


• MicrosoftMPI_jll on Windows, MPICH_jll everywhere else


• Many downstream binaries (e.g. HDF5, ADIOS2, PETSc)


• For HPC: typically want to use the binary for that system


• Support for specific network hardware and libraries


• Integration with system launcher (srun, aprun)


• Direct device-device communication (CUDA-aware)


• Problem: MPI application binary interface (ABI) is implementation-defined


• Handles (e.g. MPI_Comm) can be an int or a pointer


• Constants (e.g. MPI_ANY_SOURCE) values vary


• May be fixed in MPI 5 🤞



MPIPreferences.jl
Two options

• MPIPreferences.use_system_binary()


• Detects and configures ABI


• Uses system binary directly


• Need to override all downstream binaries


• MPIPreferences.use_jll_binary("MPItrampoline")


• Uses MPItrampoline by Erik Schnetter


• Requires building a shim (MPIwrapper) around your MPI library


• Some operations can incur overhead (e.g. MPI_Waitall)


• Downstream JLL binaries “just work”



MPI.jl tips
How to use it efficiently
• Use uppercase functions (MPI.Send/MPI.Recv) where possible


• Requires both sender & receiver to know datatype & length


• Minimal overhead vs C


• Lowercase functions (MPI.send/MPI.recv) serialize & 
deserialize


• More flexible (e.g. strings, mutable objects), but slower


• Pre-allocate output arrays


• Use MPI.Reduce! instead of MPI.Reduce


• Define MPI.Buffer(array) wrapper outside loop/function


• Important when using custom datatypes (e.g. SubArrays)


• Learn how to make your launcher output ranks to individual files


• Interleaved error stacks are difficult!


• Profile, profile, profile



Parallel profiling of Julia code



Nsight Systems + NVTX.jl

• Nsight Systems is an instrumenting profiler from Nvidia


• Profiler supports Linux & Windows


• Viewer for Linux, Windows and MacOS


• Supports multithreading and MPI


• Does not require a GPU (can be used for CPU-only code)


• NVTX.jl package for instrumenting Julia code


• Annotate Julia code with macros which the profiler can then access


• Options to instrument the Julia garbage collector


• Safe to include as a package dependency (becomes a no-op if not using the profiler)



NVTX.jl basics
Annotating Julia code

• Basic macros


• NVTX.@mark:  Instruments an instantaneous event


• NVTX.@range expr:  Instruments a code block with a 
range


• NVTX.@annotate function … end:  Instruments a 
function definition with a range


• Can attach metadata to each of these


• domain (default: current Julia module)


• message (default: [function name] file:lineno)


• color: (default: generate unique)


• payload: a single integer or float value


• category: enum value

module CustomModule


using NVTX


NVTX.@annotate function dostuff(i)

    sleep(1)

end


NVTX.@range "A loop" begin

    Threads.@threads for i = 1:5

        dostuff(i)

    end

end


end



Simple example
nsys profile --trace=nvtx julia example.jl


• Can also be invoked from the Julia REPL



Nsight + MPI
Profiling parallel Julia code

• Instruments common MPI operations using MPI profiling interface


• Can be used in two ways


• profiler - launcher - program


• nsys profile <nsys-args> mpiexec <mpi-args> julia … 


• Generates single profile


• Only works if all processes are on the same node


• launcher - profiler - program 


• mpiexec <mpi-args> nsys profile <nsys-args> julia … 


• Generates a profile per rank


• Can be opened as a “multi-profile view”


• Profiler itself has overhead


• Recommend allocating additional CPU core per profiler instance + launch with core binding





More on profiling

• Alternatives:


• Score-P/ScoreP.jl (https://github.com/JuliaPerf/ScoreP.jl) by Carsten Bauer


• Intel VTune/IntelITT.jl (https://github.com/JuliaPerf/IntelITT.jl) by Valentin Churavy


• Recent effort at instrumenting the Julia runtime


• Compilation, task switching, etc.


• Requires a custom build of Julia


• Currently supports Tracy & Intel ITT


• Future work


• Develop a common instrumentation API

https://github.com/JuliaPerf/ScoreP.jl
https://github.com/JuliaPerf/IntelITT.jl


Julia + MPI Pitfalls
My Julia HPC gripes



1. MPI library quirks
Every MPI implementation is weird in its own way

• MPI libraries do lots of weird things


• Intercept signals, malloc, dynamic libraries


• GPU-aware interfaces make everything worse


• Julia is good at triggering these issues


• ccall uses dlopen, multithreaded runtime


• Can often be worked around (e.g. with environment variables)


• See https://juliaparallel.org/MPI.jl/stable/knownissues/


• MPI launchers have poor support for interactivity


• No parallel Julia REPL 😦

https://juliaparallel.org/MPI.jl/stable/knownissues/


2. Shared file system woes
• Performance issues 

• User home directories are mounted via NFS: set your depot to be on a fast disk


• DDOS-ing your parallel file system metadata server: system images, containers, scratch partitions


• Incompatibilities 

• Typically don’t allow memory mapping (mmap): JLD2.jl, use jldopen(… ; iotype=IOStream)


• Race conditions: multiple processes/multiple jobs trying to write at the same time


• e.g. Pkg operations, precompilation, artifact downloading


• Recommend Pkg.instantiate() on a singleton process


• Use a clean depot on top (see DepotCompactor.jl)


• Disk usage: on systems with low limits 

• Use a shared depot of Julia artifacts



3. Compilation complaints

• JIT for HPC is extremely powerful


• Benefits: generating specialized code for your particular problem (especially for GPU)


• Downside: compiling specialized code for your particular problem


• Much recent work compiler work on reducing latency


• Time-to-first-X (TTFX)


• Critical to avoid method invalidations


• SnoopCompile.jl and related tools


• Native code caching (system images, pkgimages on Julia 1.9)


• Complicated on a heterogeneous cluster


• Caching for GPU kernels a work-in-progress



4. MPI + GC
• All other processes stuck waiting on a process calling the GC


• More MPI ranks => higher probability of a rank invoking GC


• Consider an iteration of compute + all-to-all communication


•  = time per iteration without GC (assume perfect scaling)


•  = time per GC pause


•  = probability of GC invocation per iteration on each processor


• Assuming each processor independent


•  = number of processes


• Average time per iteration


• Single process:                             


• Weak scaling regime:          


• Strong scaling regime:       
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Identifying the problem
Profiling the Julia Garbage Collector

• Load NVTX.jl, set 
JULIA_NVTX_CALLBACKS=gc


• Activates a hook into the Julia 
garbage collector


• Look for ranks blocking on MPI 
operations



What can be done?

1. Reduce memory allocations wherever possible


• A good idea anyway!


• See Julia docs on memory allocation profiling


• Not always possible to eliminate entirely: many small memory allocations


• e.g. CUDA kernel launches, saving output, log printing


2. Disable the garbage collector: GC.enable(false)

• Feasible once allocations are sufficiently small


3. Synchronize calling GC on all processes


• Manually call GC.gc() at set intervals


• Requires tuning heuristics for a particular workload



Summary



Summary

• Julia is a very powerful language for scientific computing


• Fast, expressive, multithreading, cross-platform, excellent GPU support


• Easy-to-use MPI support


• But you need to develop a good understanding of the runtime


• You can only optimize what you can measure


• Profiling is essential


• Julia HPC has a great community


• Slack


• Discourse


• JuliaHPC monthly call


