
Generating optimal HPC code with ML

Emil Vatai
emil.vatai@riken.jp

https://vatai.github.io/

PASC23

https://vatai.github.io/


Outline

Intro

What is code generation? Not ChatGPT!

Representation? + HPC = Polyhedral

Democratise Polyhedral: a polyhedral mini-tutorial

Current status: Tadashi



RIKEN Center for Computational Science

High Performance Arti�cial Intelligence Systems Research Team

Mohamed Wahib
HPC+compilers

Aleksandr Drozd
HPC+AI

Emil Vatai
HPC+math



Motivation/Overview



What is code generations?

The ultimate is goal: \Hey AI, optimise this code!"

▶ Source to source transformations

▶ Targeting high-level optimisations.
▶ Here High-level optimisations are code transformations which exploit deeper

insight, an overview of the overall structure/context of the application
▶ This is in contrast to low-level, local transformations performed by compilers.

▶ Something with practical use/impact.

Fundamental requirement: the transformations need correct/legal.



What is not code generation? (at least in this context)

Code generations (by ML) is very popular:

▶ ChatGPT, Co-pilot, generative models

▶ Deepmind's \new" sort algorithm1 and \new" matrix multiplication2

▶ NLP: code from human languages/commit messages

Code generation in general:

▶ Compilers: compiler pass

1Mankowitz et al, Faster sorting algorithms discovered using deep reinforcement learning
2Fawzi et al, Discovering faster matrix multiplication algorithms with reinforcement learning



The (potential) problem with LLMs/generative models

Deepmind1 found algorithms using unittests, however tests don't guarantee
correctness/legality.

▶ Primary purpose of testing is to check human code.

▶ Writing tests is hard, especially ones that ensure full coverage.

▶ Not universal: each program needs new unittests.
▶ Writing an AI to write unittests is just moving the goalpost (how do we know

tests writen by AI ensure correctness/legality).



Example of bad unittests

Original
double gold(double input[N]) {

double result = 0;
for (int i = 0; i < N; i++)

result += input[i];
return result;

}

Unittest
void unittest(int kpass) {

srand((unsigned int)time(NULL));
double input[N];
for (int k = 0; k < kpass; k++) {

for (int i = 0; i < N; i++)
input[i] = (double)rand();

compare(input);
}

}

Equal? yes; delta: 0.00000000000000000000; gold: 2243918836.000000; cgpt: 2243918836.000000;
Equal? yes; delta: 0.00000000000000000000; gold: 4117298770.000000; cgpt: 4117298770.000000;
...
Equal? yes; delta: 0.00000000000000000000; gold: 3835775724.000000; cgpt: 3835775724.000000;
And now for some tricky input:
Equal? no ; delta: 0.00000005960464477539; gold: 400000000.000000; cgpt: 400000000.000000;

Transformed
double cgpt(double input[N]) {

double result = 0;
for (int i = N - 1; i >= 0; i--)

result += input[i];
return result;

}

Main
int main(int argc, char *argv[]) {

unittest(10);
double tricky_input[] = {400000000, 9e-8, 9e-8};
printf("And now for some tricky input:\n");
compare(tricky_input);
return 0;

}



Representation

One of the �rst questions we have was: When training the ML model, which
representation(s) do we use?

Representations at di�erent compiler passes:

1. Source code

2. Abstract Syntax Tree (AST)

3. Intermediate Represation(s) (IR), e.g. LLVM IR

4. Assembly code

5. Binary code

Other representations:

1. Graphical representations3 (call ow data ow graph)

2. Polyhedral model

3Cummins at al, ProGraML: Graph-based Deep Learning for Program Optimization and

Analysis



HPC codes, just the right ratio of di�cult

The next question: How to constrain the problemspace, to make it more feasible
while still keeping it relevant/impactful?

We target HPC/scienti�c codes (e.g. stencils, simulations) because:

▶ The plethora of research papers describing optimisations of HPC codes is
evidence that this is not a solved problem.

▶ HPC codes usually contain deep and complex nested loops, but each loop
separately is regular (regular memory accesses and boundaries).

▶ We have experience with optimising such codes.



Polyhedral model

Why polyhedral? \Best bang for the buck."

▶ Reasonable restrictions.

▶ Mathematically provable correctness/legality.

▶ Compact way to express optimisation opportunities (e.g. parallelism)

▶ Compact way to express big transformations (e.g. schedule of the tile)



Reasonable restrictions

SCoP/SANA4: Most is true for HPC codes

▶ Static control: control does not depend on input data

▶ A�ne: all relevant expressions are (quasi-)a�ne

▶ No Aliasing: essentially no pointer manipulations

These restrictions can be relaxed if care is taken.

4Verdoolaege, Polyhedral compilation without polyhedra



Working example

Dpendecy in the outer loop, inner loop can be parallel:

for(int i = 1; i < N; i++)
for(int j = 0; j < M; j++)

S1: a[i][j] += a[i-1][j];

Components of polyhedral compilation

▶ SCoP extraction

▶ Dependency analysis

▶ Find a schedule �

▶ Legality check

▶ Generate the new source code



Polyhedral basics

Everything can be represented as a matrix

▶ Statements: S1 (S1 is a label). S1: a[i][j] += a[i-1][j];
▶ Statement instances S1(i ; j ) (i ; j are symbols for integer variables)

▶ Domain of S1: fS1(i ; j ) : 1 � i � N � 1; 0 � j �M � 1g (N is a symbolic
constant, unknown but not changing)

▶ Dependency graph: e1 : S1(is ; js)! S1(it ; jt ) (between statement instances)
▶ Notation: s = source (before), t = target (after)
▶ Dependency polyhedron: Pe = fS1(is ; js ; it ; jt ) : is = it � 1; js = jtg



Dependency check

Original: �0 : S1(i ; j )! (i ; j )

▶ Dependencies are maps between event instances: S1(i � 1; j )! S1(i ; j )

▶ Schedules are maps from statement instances to (multidimensional) time

Apply the schedule to the range and domain

▶ Dependency: S1(i � 1; j )! S1(i ; j )

▶ Map to time: (i � 1; j ) � (i ; j ) (� is the lexicographic order) or

▶ (i ; j )� (i � 1; j ) = (1; 0) � 0 OK!

▶ �(~s) � �(~t) for the dependency ~s ! ~t

▶ �(i ; j ) � 0 where �(i ; j ) = �(i ; j )� �(i � 1; j )



Expressing Transformations

Swap loops �1 : S1(i ; j )! (j ; i)

▶ Check: (j ; i)� (j ; i � 1) = (0; 1) � 0 OK!

▶ You can start get �1 from scratch, but you can also modify �0: in this case

�1 = T � �0 where T = (i ; j ) 7! (j ; i). �1 : S1(i ; j )
�0�! (i ; j )

T
�! (j ; i)

▶ The zero in � = (0; 1) we can parallelise the j loop

Reverse j �2 : S1(i ; j )! (i ;�j )

▶ Check: (i ;�j )� (i � 1;�j ) = (1; 0) � 0 OK!

Reverse i �3 : S1(i ; j )! (�i ; j )

▶ Check: (�i ; j )� (�(i � 1); j ) = (�1; 0) 6� 0 ILLEGAL!



More transformations

Diagonal from (0; 0) �4 : S1(i ; j )! (i + j ; j ):

▶ Check: (i + j ; j )� (i � 1 + j ; j ) = (1; 0): OK!

Alternative diagonal from (0; 0) �5 : S1(i ; j )! (i + j ; i)

▶ Check: (i + j ; i)� (i � 1 + j ; i � 1) = (1; 1): OK!

Tiling: �(i ; j ) = (bi=Tc; bj =Tc; i mod T ; j mod T )

▶ (bi=Tc; bj =Tc; i mod T ; j mod T )� (b(i � 1)=Tc; bj =Tc; (i �
1) mod T ; j mod T )

▶ The delta: (qi ; 0; ri ; 0) where qi = bi=Tc � b(i � 1)=Tc,
▶ here qi = 1 if i j T and qi = 0 when when i ∤ T
▶ ri = 1� qiT which is 1�T < 0 if i j T
▶ when i j T : (1; 0; 1�T ; 0) � 0; when i ∤ T : (0; 0; 1; 0) � 0: OK!



Tools

A slide from Verdoolaege, \Polyhedral compilation without polyhedra".



Tadashi

Ultimate goal: legality check

▶ Ask <random LLM/generative model> to optimise your code, and have a tool
to check the legality of the output the model produced!

▶ Very di�cult: which original statement corresponds to which transformed
statement?

正:Tadashi

▶ Uses polyhedral.

▶ Checks the legal of any schedule.
▶ Quite easy to do with the ISL library.

▶ Generates5 the transformed code (if the transformation is legal).

5work in progress.



Restrictions and relaxations

The restrictions

1. Polyhedral is oblivious to the statements

2. Polyhedral is oblivious to the hardware

3. Bending the SANA/SCoP rules

And how to bend them

1. More involved data ow analysis

2. The � encodes info about parallelism and data locality
▶ Transformations in and after polyhedral

3. Approximations and/or pw qpolynomial



A framework to automate the process


