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Scientific Workflows
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Scientific workflows define the sequence of tasks needed for the
creation, collection, exploration, exploitation, and preservation of data

● Enable in silico science in all disciplines

● Capture complex interactions of tasks 

and data dependencies

● Typically depend on high-performance 

computing systems The CyberShake workflow. Credit: Anwar N, Deng H. A Hybrid Metaheuristic 
for Multi-Objective Scientific Workflow Scheduling in a Cloud Environment. 
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Data Oriented Challenges in the Continuum
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Heterogeneity in hardware, platforms and applications lead to challenges in:

● Interoperating different programming and data models

● Representing data in a unified manner 

● Placing and transferring data efficiently

● Supporting provenance and reproducibility
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Heterogeneity in hardware, platforms and applications lead to challenges in:

● Interoperating different programming models

● Representing data in a unified manner 

● Placing and transferring data efficiently

● Supporting provenance and reproducibility

How can we converge these diverse ecosystems 
without losing their respective benefits?

Not a exhaustive list!



Case Studies: 
Geographically Distributed Water Forecasting
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Hydrogeological Simulations for Water Forecasting

21

● Water resource management requires fast and 
reliable knowledge of very complex 
hydrogeological systems

● Relies on real-time stochastic simulation of 
water profiles
○ Multiscale nonlinear processes and matrix 

operations from multi-physics models
○ Input data from several geographically 

distributed sensors
○ Severe deadlines (forecasts, status reports 

for emergencies)



Hydrogeological Simulations for Water Forecasting
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HPC has increased the scale and complexity 
of the simulations:
○ Multicore systems
○ Distributed cluster computing
○ Grid-like technologies

But HPC insufficient to cover the 
needs of a geographically distributed 
sensor network



Data-Centric Transformation of an HPC Application
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Tightly-coupled 
and not pleasingly 
parallelisable

Loosely-coupled 
and pleasingly 
parallelisable

Caíno-Lores, S., Carretero, J., Nicolae, B., Yildiz, O., & Peterka, T. (2019). Toward High-Performance Computing and Big Data Analytics 
Convergence: The Case of Spark-DIY. IEEE Access, 7, 156929-156955.



A Generalist Architecture for HPC-BDA Applications
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● Enable transparent access to 
existing BDA and HPC features

● Expose a unified data abstraction 
and operational model

● Build on existing runtimes

● Allow process-centric workloads 
to interact with BDA platforms 
and infrastructures
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● Enable transparent access to 
existing BDA and HPC features

● Expose a unified data abstraction 
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Case Study: 
Massively Parallel In Situ Analysis of Molecular 
Dynamics Simulations
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Classical Molecular Dynamics (MD) Simulations
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1. MD step computes forces on single atoms 
(e.g., bond, dihedrals, nonbond)

2. Forces are added to compute acceleration

3. Acceleration is used to update velocities 

4. Velocities are used to update the atom 
positions

5. Every N steps (stride)
🡪 Store 3D snapshot or frame

Forces on single atoms 
     Acceleration 
          Velocity 
               Position
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1. MD step computes forces on single atoms 
(e.g., bond, dihedrals, nonbond)

2. Forces are added to compute acceleration

3. Acceleration is used to update velocities 

4. Velocities are used to update the atom 
positions

5. Every N steps (stride)
🡪 Store 3D snapshot or frame

Data generation 
Forces on single atoms 
     Acceleration 
          Velocity 
               Position



Scientist-Driven Analysis of MD Trajectories
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1Travis Johnston, Buyu Zhang, Adam Liwo, Silvia Crivelli, and Michela Taufer. “In-Situ Data Analysis and Indexing of Protein Trajectories,” 
JCC 2017.

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Frame 55 Frame 60 Frame 65 Frame 70 Frame 75 Frame 80

#!/bin/bash
#SBATCH 
--time 
4:00:00
#SBATCH 
--nodes 

#!/bin/bash
#SBATCH 
--time 
4:00:00
#SBATCH 
--nodes 

#!/bin/bash
#SBATCH 
--time 
4:00:00
#SBATCH 
--nodes 

ScientistVisualization
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1Travis Johnston, Buyu Zhang, Adam Liwo, Silvia Crivelli, and Michela Taufer. “In-Situ Data Analysis and Indexing of Protein Trajectories,” 
JCC 2017.

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Frame 55 Frame 60 Frame 65 Frame 70 Frame 75 Frame 80

#!/bin/bash
#SBATCH 
--time 
4:00:00
#SBATCH 
--nodes 

#!/bin/bash
#SBATCH 
--time 
4:00:00
#SBATCH 
--nodes 

#!/bin/bash
#SBATCH 
--time 
4:00:00
#SBATCH 
--nodes 

ScientistVisualization

Simulation and analysis 
are isolated!



From HPC to BDA MD Simulations
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An holistic approach that co-locates simulation and analysis can benefit from

● Natural integration with data streaming
● Massive task parallelism
● In-memory storage

However, we must find a way to integrate MD simulations with the analytics



In Situ Analysis of MD Trajectories: A4MD
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https://analytics4md.org/
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Application: Folding Runtime Detection
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• The LEV collective variable 
(CV) can detect the folded 
state of an alpha helix with 
high accuracy using just one 
frame.

• The CV can be analysed in 
situ!

Summit – T1_C1
Frame 6400

S. Caino-Lores et al., "Runtime Steering of Molecular Dynamics Simulations Through In Situ Analysis and Annotation of 
Collective Variables," Platform for Advanced Scientific Computing, 2023.



Application: ML-Based Runtime Event Detection
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H. Carrillo-Cabada et al., "A Graphic Encoding Method for Quantitative Classification of Protein Structure and 
Representation of Conformational Changes," in IEEE/ACM Transactions on Computational Biology and Bioinformatics

Non-negative matrix factorization 
• An increase in reconstruction loss indicates that a NMF model trained 

for several frames is not suitable for the new observations
• A new model is trained for each event



Case Studies: 
Runtime Neural Network Fitness Prediction for 
Neural Architecture Search
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Neural Networks (NN) can be utilized to 
extract information from scientific data

Protein images
Protein properties:

● Protein type
● Orientation
● Structure

Neural Networks and Neural Architecture Search

48 Olaya et al, “Identifying Structural Properties of Proteins from X- ray Free Electron Laser Diffraction Patterns”. In Proceedings of the 18th IEEE 
International Conference on e-Science (eScience), pages 1–10, Salt Lake City, Utah, USA, October 2022. IEEE Computer Society.
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Custom NNs are needed for each dataset

Olaya et al, “Identifying Structural Properties of Proteins from X- ray Free Electron Laser Diffraction Patterns”. In Proceedings of the 18th IEEE 
International Conference on e-Science (eScience), pages 1–10, Salt Lake City, Utah, USA, October 2022. IEEE Computer Society.



Neural Architecture Search (NAS) can 
automatically find an optimal NN for a given 
dataset.

Neural Networks and Neural Architecture Search
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Neural Networks (NN) can be utilized to 
extract information from scientific data

Protein images
Protein properties:

● Protein type
● Orientation
● Structure

Custom NNs are needed for each dataset



Transforming NAS Workflows
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Transforming NAS Workflows

52 Rorabaugh, A. K., Caino-Lores, S., Johnston, T., & Taufer, M. (2022). Building high-throughput neural architecture search workflows via a 
decoupled fitness prediction engine. IEEE Transactions on Parallel and Distributed Systems, 33(11), 2913-2926.



1. Build the necessary interfaces to decouple existing NAS from the prediction strategy
2. Enable runtime analysis of generated NNs
3. Inform the NAS about NN predicted performance
4. Support the generation of NN record trail

Transforming NAS Workflows

Modular NAS Workflow

53

Users can plug in any 
NAS and tailor the 
prediction engine to 
their problem and 
dataset

A4NN interfaces



Open Access NN Data Commons
1. Extract metadata from NAS workflow executions
2. Track record trail of each NN
3. Classify NNs according to taxonomies
4. Build data commons containing record trails, scripts, tutorials, and tools to ensure 

FAIR data

54

A4NN interfaces
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1. Simulations and AI workloads can act as “streaming devices”

2. Data exchange components must cover multiple roles
○ Within the workflow: unification, staging, communication, annotation, 

provenance
○ Within the system: workload balancing, fault tolerance, performance

3. Orchestration requires introducing elasticity (i.e. dynamic task allocation according to 
workload needs)

4. Programmability is key
○ Workflows require interfaces between different programming languages and data 

models
○ We are generalising A4MD into A4X, and applying in situ approaches in other 

domains like neural network architecture search
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Next steps towards interoperability of computing ecosystems for scientific workflows

● Shift towards data- and user-centric workflow composition
○ Focus on data-resource mapping, metadata and user insights
○ Make the data management layer the central component of the workflow 

● Better data characterisation
○ Understand data volumes, formats, generation/consumption rates, metadata, etc.

● New data abstractions and management approaches
○ Find common representations and interfaces
○ Abstract the interaction with the “data lake”

● Sustainable SW stack for scientific workflows in a changing HW landscape
○ Leverage existing solutions as building blocks 
○ Promote modular and extensible workflow composition
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Assimilation of Emerging Technologies

66

Emerging workflows are bringing unconventional HW into the picture (e.g., neuromorphic, 
quantum) and additional challenges

• Very limited resources 
• Immature interoperation capabilities 

outside of commercial environments
• Heavy data transformation overhead
• Limited SW stack
• No unified data abstractions 

Weder, B., Barzen, J., Leymann, F., & Vietz, D. (2022). Quantum software development lifecycle. In Quantum Software Engineering (pp. 61-83). Cham: 
Springer International Publishing.
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