A Data-Centric Perspective on Scientific Workflows in the Computing Continuum

Silvina Caíno-Lores, PhD scainolo@utk.edu

Dr. Silvina Caino-Lores

Research Assistant Professor scaino-lores@acm.org

Research interests

- Cloud computing
- HPC systems and applications
- Big Data and data science
- Workflow systems
- Computational reproducibility
- Converged environments (HPC+BD+AI)
- Scientific computing

Interdisciplinary and collaborative work

- Railway and electric grid infrastructure
- Hydrogeology
- Molecular dynamics
- Protein crystallography
- Urban traffic planning
- Astrophysics
- ML/AI (especially DL)

Acknowledgements

- Argonne National Laboratory (B. Nicolae, T. Peterka, O. Yildiz)
- Cornell University (M. Cuendet, E. Kots, A. Plante, H. Weinstein)
- **IBM** (Global University Program)
- OLCF (Allocation CSC427)
- NSF (NSF awards 1741057 and 2103845)
- University Carlos III of Madrid (J. Carretero)
- University of Neuchatel (P. Kropf, A. Lapin)
- University of New Mexico (H. Carrillo-Cabada, T. Estrada, H. Sahni)
- University of North Texas (S. Bhowmick)
- University of Southern California (E. Deelman, R. Ferreira da Silva, T. Anh Do, L. Pottier, K. Vahi)
- Syracuse University (D. Brown)
- University of Tennessee-Knoxville (J. Luettgau, I. Lumdsen, J. Marquez, R. Patel, A. Rorabaugh, C. Schuman, M. Taufer, M. Wyatt)

And many more!

Scientific Workflows

Scientific workflows define the sequence of tasks needed for the creation, collection, exploration, exploitation, and preservation of data

- Enable in silico science in all disciplines
- Capture complex interactions of tasks and data dependencies
- Typically depend on high-performance computing systems

The CyberShake workflow. Credit: Anwar N, Deng H. A Hybrid Metaheuristic for Multi-Objective Scientific Workflow Scheduling in a Cloud Environment.

Data Oriented Challenges in the Continuum

Heterogeneity in hardware, platforms and applications lead to challenges in:

- Interoperating different programming and data models
- Representing data in a unified manner
- Placing and transferring data efficiently
- Supporting provenance and reproducibility

Data Oriented Challenges in the Continuum

Heterogeneity in hardware, platforms and applications lead to challenges in:

- Interoperating different programming models
- Representing data in a unified manner
- Placing and transferring data efficiently
- Supporting provenance and reproducibility

Not a exhaustive list!

Data Oriented Challenges in the Continuum

Heterogeneity in hardware, platforms and applications lead to challenges in:

- Interoperating different programming models
- Representing data in a unified manner
- Placing and transferring data efficiently
- Supporting provenance and reproducibility

Not a exhaustive list!

How can we converge these diverse ecosystems without losing their respective benefits?

Case Studies: Geographically Distributed Water Forecasting

Hydrogeological Simulations for Water Forecasting

- Water resource management requires fast and reliable knowledge of very complex hydrogeological systems
- Relies on real-time stochastic simulation of water profiles
 - Multiscale nonlinear processes and matrix operations from multi-physics models
 - Input data from several geographically distributed sensors
 - Severe deadlines (forecasts, status reports for emergencies)

Hydrogeological Simulations for Water Forecasting

HPC has increased the scale and complexity of the simulations:

CLIENT

Base

model

- Multicore systems
- Distributed cluster computing
- Grid-like technologies

But HPC insufficient to cover the needs of a geographically distributed sensor network

Data-Centric Transformation of an HPC Application

- Enable transparent access to existing BDA and HPC features
- Expose a unified data abstraction and operational model
- Build on existing runtimes
- Allow process-centric workloads to interact with BDA platforms and infrastructures

- Enable transparent access to existing BDA and HPC features
- Expose a unified data abstraction and operational model
- Build on existing runtimes
- Allow process-centric workloads to interact with BDA platforms and infrastructures

- Enable transparent access to existing BDA and HPC features
- Expose a unified data abstraction and operational model
- Build on existing runtimes
- Allow process-centric workloads to interact with BDA platforms and infrastructures

- Enable transparent access to existing BDA and HPC features
- Expose a unified data abstraction and operational model
- Build on existing runtimes
- Allow process-centric workloads to interact with BDA platforms and infrastructures

- Enable transparent access to existing BDA and HPC features
- Expose a unified data abstraction and operational model
- Build on existing runtimes
- Allow process-centric workloads to interact with BDA platforms and infrastructures

Case Study:

Massively Parallel In Situ Analysis of Molecular Dynamics Simulations

Classical Molecular Dynamics (MD) Simulations

Forces on single atoms

Acceleration

Velocity

Position

- 1. MD step computes **forces** on single atoms (e.g., bond, dihedrals, nonbond)
- 2. Forces are added to compute acceleration
- 3. Acceleration is used to update **velocities**
- 4. Velocities are used to update the **atom positions**
- 5. Every *N* steps (stride)
 - ☐ Store 3D snapshot or frame

Classical Molecular Dynamics (MD) Simulations

Forces on single atoms

- **└** Acceleration
 - **└** Velocity
 - **└** Position

- 1. MD step computes **forces** on single atoms (e.g., bond, dihedrals, nonbond)
- 2. Forces are added to compute acceleration
- 3. Acceleration is used to update velocities
- 4. Velocities are used to update the atom positionsData generation
- 5. Every *N* steps (stride)
 - ☐ Store 3D snapshot or frame

Scientist-Driven Analysis of MD Trajectories

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Scientist-Driven Analysis of MD Trajectories

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Simulation and analysis are isolated!

From HPC to BDA MD Simulations

An holistic approach that co-locates simulation and analysis can benefit from

- Natural integration with data streaming
- Massive task parallelism
- In-memory storage

However, we must find a way to integrate MD simulations with the analytics

In Situ Analysis of MD Trajectories: A4MD

In Situ Analysis of MD Trajectories: A4MD

Application: Folding Runtime Detection

- The LEV collective variable (CV) can detect the folded state of an alpha helix with high accuracy using just one frame.
- The CV can be analysed in situ!

Application: ML-Based Runtime Event Detection

Non-negative matrix factorization

- An increase in reconstruction loss indicates that a NMF model trained for several frames is not suitable for the new observations
- A new model is trained for each event

Case Studies:

Runtime Neural Network Fitness Prediction for Neural Architecture Search

Neural Networks and Neural Architecture Search

Neural Networks (NN) can be utilized to extract information from scientific data

Neural Networks and Neural Architecture Search

Neural Networks (NN) can be utilized to extract information from scientific data

Custom NNs are needed for each dataset

Neural Networks and Neural Architecture Search

Neural Networks (NN) can be utilized to extract information from scientific data

Neural Architecture Search (NAS) can automatically find an optimal NN for a given dataset.

Generate NN Models Train NNs Select the best NNs Prediction Strategy

Optimal NN

Transforming NAS Workflows

NAS workflow

Transforming NAS Workflows

NAS workflow Dataset **Generate NN Models** Train NNs Trained 1 NN -**Prediction** Select the Strategy best NNs **Optimal NN**

Transforming NAS Workflows

- 1. Build the necessary interfaces to decouple existing NAS from the prediction strategy
- 2. Enable runtime analysis of generated NNs
- 3. Inform the NAS about NN predicted performance
- 4. Support the generation of NN record trail

Modular NAS Workflow

Users can plug in any NAS and tailor the prediction engine to their problem and dataset

Open Access NN Data Commons

- 1. Extract metadata from NAS workflow executions
- Track record trail of each NN
- 3. Classify NNs according to taxonomies
- Build data commons containing record trails, scripts, tutorials, and tools to ensure FAIR data

1. Simulations and AI workloads can act as "streaming devices"

- 1. Simulations and AI workloads can act as "streaming devices"
- 2. Data exchange components must cover multiple roles
 - Within the workflow: unification, staging, communication, annotation, provenance
 - Within the system: workload balancing, fault tolerance, performance

- 1. Simulations and AI workloads can act as "streaming devices"
- 2. Data exchange components must cover multiple roles
 - Within the workflow: unification, staging, communication, annotation, provenance
 - Within the system: workload balancing, fault tolerance, performance
- 3. Orchestration requires introducing elasticity (i.e. dynamic task allocation according to workload needs)

- 1. Simulations and AI workloads can act as "streaming devices"
- 2. Data exchange components must cover multiple roles
 - Within the workflow: unification, staging, communication, annotation, provenance
 - Within the system: workload balancing, fault tolerance, performance
- 3. Orchestration requires introducing elasticity (i.e. dynamic task allocation according to workload needs)
- Programmability is key
 - Workflows require interfaces between different programming languages and data models

The Future of Scientific Workflows in the Computing Continuum

- Shift towards data- and user-centric workflow composition
 - Focus on data-resource mapping, metadata and user insights
 - Make the data management layer the central component of the workflow

- Shift towards data- and user-centric workflow composition
 - Focus on data-resource mapping, metadata and user insights
 - Make the data management layer the central component of the workflow
- Better data characterisation.
 - Understand data volumes, formats, generation/consumption rates, metadata, etc.

- Shift towards data- and user-centric workflow composition
 - Focus on data-resource mapping, metadata and user insights
 - Make the data management layer the central component of the workflow
- Better data characterisation
 - Understand data volumes, formats, generation/consumption rates, metadata, etc.
- New data abstractions and management approaches
 - Find common representations and interfaces
 - Abstract the interaction with the "data lake"

- Shift towards data- and user-centric workflow composition
 - Focus on data-resource mapping, metadata and user insights
 - Make the data management layer the central component of the workflow
- Better data characterisation
 - Understand data volumes, formats, generation/consumption rates, metadata, etc.
- New data abstractions and management approaches
 - Find common representations and interfaces
 - Abstract the interaction with the "data lake"
- Sustainable SW stack for scientific workflows in a changing HW landscape
 - Leverage existing solutions as building blocks
 - Promote modular and extensible workflow composition

Assimilation of Emerging Technologies

Emerging workflows are bringing unconventional HW into the picture (e.g., neuromorphic, quantum) and additional challenges

- Very limited resources
- Immature interoperation capabilities outside of commercial environments
- Heavy data transformation overhead
- Limited SW stack
- No unified data abstractions

General Structure of a Hybrid Quantum Application.

A Data-Centric Perspective on Scientific Workflows in the Computing Continuum

Silvina Caíno-Lores, PhD scainolo@utk.edu

