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Combustion DNS-LES Coupling Workflow Combustion simulation-visualization workflow

Coupled Scientific Workflows at Extreme Scales
• Advanced scientific simulations running at extreme scale on high end systems generate 

large amounts of data
•  Transporting and processing data to realize insights is expensive (performance, energy)

• In-situ workflows compose of multiple applications running on the same system that 
efficiently interact and exchange data at runtime
•  Multi-physics multi-model code coupling (Combustion DNS-LES)

•  Online data analysis/visualization (Combustion simulation-visualization)

Simulation VisualizationCoupled Simulation



Staging Based In-Situ Workflows
• Data staging techniques provide effective solutions to enable in-situ workflows to efficiently 

interact and exchange data at runtime
– In-memory storage distributed across set of cores/nodes
– Support runtime data processing, sharing and exchange
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l Virtual shared-space programming abstraction 
l Simple API for coordination, interaction and messaging

l Distributed, associative, in-memory object store 
l Online data indexing, flexible querying

l Autonomic (cross-layer) runtime management 
l Hybrid in-situ/in-transit execution 

l High-throughput/low-latency asynchronous data transport

The DataSpaces Abstraction

DataSpaces: Data Staging Service for In-Situ Workflows



q Fail-stop Failure, Silent Errors in Current Systems
üTitan: MTBF = 8 h, the longest period without any failures 24h (2014).
üJaguar (18688 nodes): silent errors have been observed once per day (2010).

üHopper (6000 nodes): encounters ~32 FITs per DRAM device (2015).

q For Extreme Scale Systems
üThe estimated MTBF would be in minutes.

A Silent Error (also known as Silent Data Corruption) is an unintentional change 
to bits (1 -> 0 or 0 -> 1) in memory which can impact correctness and performance 
of applications.

Data based on available public records in: 
D. Tiwari, S. Gupta, S. S. Vazhkudai. “Lazy checkpointing: Exploiting temporal locality in failures to mitigate checkpointing overheads on extreme-scale systems.” DSN 2014
V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and S. Gurumurthi. “Memory errors in modern systems: The good, the bad, and the ugly”. In 
Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’15), March 2015.

Failures in Extreme Scale Systems

Introduction

Failure Frequency for Extreme Scale Systems
MTBF per node 1 year 10 years 100 years

MTBF for 10^5 nodes system 5.3 min 53 min 9 h

MTBF for 10^6 nodes system 32 sec 5.3 min 53 min
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Data Resilience for Data Staging

Introduction

q Checkpoint/Restart Approach for Implementing Resilient Data Staging

q Checkpointing the Data in Data Staging to PFS  
Coupled S3D simulation visualization workflow

q Case Study 1: 
• Workflow run on the Titan Cray XK7 system.
• Checkpoint 4Gb~32Gb data in data staging 

to PFS in every 5 mins (total 17~20 times).

Observation:
• It took ∼ 15.6% of the workflow run-time to 

achieve fault tolerance for just the staging in 
the maximum case.
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Execution time 
Data reading
Data writing
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Failure Recovery for In-situ Workflows
• Crash Consistency

– Coupled applications exchanging large mount of data in extreme scale. To keep data consistency during failure 
recovery is challenging.

Individual checkpoint/restart for applications in workflows ü Read the wrong version 
of data (Case 1).

Case1 

wrong read

Case2

unnecessary write

ü Unnecessarily write data 
twice (Case 2).

• Diversification of Fault Tolerance Strategies
• Allow diversification of fault tolerance strategy among different components (E.g., Process 

replication, Checkpoint/restart, ABFT).
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Error Detection for In-situ Workflows
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q Propagation of Silent Errors in Workflows

q Utilizing Idle Compute Resource in Data Staging  

Observation: Silent errors are 
propagated, making the final result 
invalid.

q Case Study 2: 
• A synthetic workflow on Titan Cray XK7 

system.
• Write 8M~64M data for each staging server 

per time step (total 320M~2560M).
Observation:

• CPU utilization remained consistently low
• Maximum CPU utilization 22%

Coupled S3D simulation visualization workflow

Error propagation
Silent error



Resilient In-Situ Workflows: Requirements/Challenges 

The final results of the overall computation for workflows is the outputs of the 
workflow, and failures (fail-stop failures, silent errors) or data inconsistency in 
any component of the workflow can invalidate these outputs

Requirements/challenges include:
• Managing data resilience in staging with high-performance, low overhead, and minimize the 

inference for regular data operation of staging
• Providing a general transparent error detection framework for workflows to prevent the 

propagation of these errors between components
• A loosely coupled fault tolerance mechanism to minimize the inference between 

components, while still maintaining the consistent states of workflows



Towards Resilient Staging-based In-Situ Workflows 

• Design and implementation of CoREC, a hybrid erasure coding scheme that provides scalable 
data resilience and failures recovery for data staging.
– [IPDPS18] “Scalable data resilience for in- memory data staging”, in Proceedings of the 32th IEEE 

International Parallel and Distributed Processing Symposium (IPDPS’18), pages 105–115, May 2018. 
– [TOPC20] “CoREC: Scalable and Resilient In-Memory Data Staging for In-Situ Workflows”, in International 

Journal of ACM Transactions on Parallel Computing, May 2020.

• Design and implementation of an in-staging error detection framework that provides data 
verification for staging based in-situ workflows.
– [SC’19] “Addressing Data Resiliency for Staging Based Scientific Workflows”, in Proceedings of the 

International Conference on High Performance Computing, Networking, Storage and Analysis (SC), 2019 
International Conference, November 2019.

• Design and implementation of checkpoint/restart with data logging framework for in-situ 
scientific workflows that effectively maintain crash consistency during recovery.
– [HIPS20] “Scalable Crash Consistency for Staging-based In-situ Scientific Workflows”, in 25th Proceedings 

of the International Workshop on High-Level Parallel Programming Models and Supportive Environments 
(HIPS), May 2020.

Shaohua Duan



q A hybrid approach to data resilience for staging-based workflows

q Leverages data classification for intelligent decision making
ü Spatial/Temporal Data Locality

ü Hot data            Replication
ü Cold Data          Erasure Coding

Dynamic hybrid Erasure Codes & Replication
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CoREC (Combining Replication and Erasure Coding)
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Cold Data Object:
Hot Data Object:

Parity Object:
Replica:

qHot/Cold data:
If a data object has been recently accessed more than a 
number of times within a certain time interval it is considered 
as hot data, otherwise it is considered as cold data. 
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Multi-level Erasure Codes & Replication

CoREC-multilevel (CoREC with multilevel data redundancy) 
q Provide different levels of data reliability with an acceptable overall costs and the associated 

trade-off of achieved resilience, overheads, performance, storage etc.

q Vary data redundancy scheme (n-way replications and erasure coding schemes) based on 
the requirements of data resilience level.

ü High reliability data -> Triplication, RS(6, 4)
ü Low reliability data ->  Duplication, RS(4, 3)

Data Objects
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Redundant Data 
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𝐶!  𝐶" : Time Complexity of replication / erasure coding
𝑓# 𝑓$ : Frequency of updates for hot / cold data
𝑃# 𝑃$ : Percentage of hot / cold data
𝑛: The scale of workload
𝑟!: Miss ratio

= 𝐶!𝑓" − 𝐶#𝑓$ + 𝐶# − 𝐶! 𝑓"𝑟% 𝑛𝑃" + 𝐶#𝑓$𝑛

𝐶&'()& = 𝐶!𝑓"𝑛𝑃" + 𝐶#𝑓$𝑛𝑃$
= 𝐶!𝑓" − 𝐶#𝑓$ 𝑛𝑃" + 𝐶#𝑓$𝑛

𝑃$ = 1 − 𝑃#
𝐶" − 𝐶! 𝑓#𝑟%𝑛𝑃#

Modeling the CoREC / CoREC-multilevel Approach
q A time complexity of CoREC:

q A time complexity of CoREC-multilevel:

𝐶&'()&* = )𝐶!𝑓" −)𝐶#𝑓$ + )𝐶# −)𝐶! 𝑓"𝑟% 𝑛𝑃" +)𝐶#𝑓$𝑛

)𝐶! = 𝑃!+𝐶!+ + 𝑃!,𝐶!, +⋯+ 𝑃!-𝐶!-
)𝐶# = 𝑃#+𝐶#+ + 𝑃#,𝐶#, +⋯+ 𝑃#-𝐶#-
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Grouped replication & erasure coding

Data Objects, Replicas and Parity layout in data staging. 
(replication group size k= 2, Erasure coding group size n= 4).

Advantage: tolerate concurrent correlated staging server failures 
(e.g., Node 1 failure).
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Balance staging server workload within group. 
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Process recovery

q Failure detection: Detecting failures by RDMA connection 
error codes, and handling failures through ULFM-enabled MPI. 

q Degraded mode: Only the requested data is re-constructed, 
sent to the application and discarded.

q Process recovery: The same number of backup staging 
processes are activated and merged with the existing data 
staging process group. 

q Lazy recovery mode: Each object on the failed server will be 
recovered immediately after it is queried or updated. The 
recovery of all other remaining objects are triggered based on 
the time-limit set for delayed data recovery.

Advantage: Alleviate data-recovery overheads and interference 
with data-reads requests. 

The System Design of CoREC

Data and process recovery in data staging area.

Recovering Data Staging Server from Failures



q Local Object Management
ü Local data objects classification and data 

objects, replicas, parities, metadata’s storage.
ü Jerasure open-source library for encoding and 

decoding.
q Object Transportation

ü Data objects, replicas, parities, metadata’s 
synchronization and transportation.

q System Status Monitor
ü Staging server’s workload monitoring, failure 

detection and recovery initiation. 
q Process Resiliency

ü Manages a spare process pool and 
implements the detection and handling of 
staging server failures using ULFM.

System Architecture of CoREC. 

The System Implementation of CoREC

Coordination Layer

DART/Data Communication Layer (RDMA)

Staging Server

Jerasure Library 

Data Resiliency 
Module

Application Interface

Object 
Transportation Coordination Layer

Client

Query Engine, Data Indexing

Parity Object

Data Storage Layer

Data Object

Object 
Management

System Monitor

New/Update component :
Existing component :

Process Resiliency Module (ULFM)

Titan, Cray XK7
• 18,688 nodes 
• Gemini interconnect
• 16-core AMD 6200 series Opteron processor
• 32GB memory per node, 600 TB system memory

Cori, Cray XC40
• 622,336 Cores 
• Aries interconnect
• Intel Xeon Phi 7250 68Cores 1.4GHz
• 878,592 GB system memory



q Synthetic Experiments: 5 cases with data read/write patterns from real scientific workflows.
 

Result: 
ü CoREC improves 13.8%, 5.8% relative to Erasure and Hybrid (in Case 4). 
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Case 1 Case 2 

Case 3 Case 4

Case # Description
1 Write the entire data domain in each time step.

2 Write the entire data domain in multiple time steps.

3 Write a subset of the data domain at a higher frequency 
than others.

4 Write subsets of the data domain with random access 
pattern.

Write efficiency = Write response time/Storage Efficiency (lower is better)

Experimental Evaluation

Baselines: DataS: Data Staging without fault tolerance;  Replicate: In-memory 
Replication;  Erasure: In-memory Erasure coding;  Hybrid: Simple Hybrid 
erasure coding with LRU; _PFS: Parallel File System; _BB: Burst Buffer; 
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Case 4
ü CoREC gets better performance than Erasure and Hybrid in 4 Cases.



Case 5

CoREC+1d or 2d: in degraded mode with 1 or 2 failures
CoREC+1f or 2f: in lazy recovery mode with 1 or 2 failures

Experimental Evaluation
q Synthetic Experiments: 5 cases with data read/write patterns from real scientific workflows.

Result:
ü Degraded mode: read response time increases by 4.11% (CoREC+1f), 23.4% (CoREC+2f) as compared to failure-free.
ü Lazy recovery: read response time increases only by 2.41% (CoREC+1d), 8.43% (CoREC+2d) as compared to failure-free.
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ü Lazy recovery mode significantly reduces the failure recovery overhead.

Case # Description
5 Read the entire data domain in each time step.



ü Reduces read response time by up to 40.8% and 37.4% for one and two failures respectively.

Result:
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Experimental Evaluation

q Real Experiments: S3D workflows
 

S3D combustion simulation analysis workflow on Titan Cray XK7
No. of cores 4480 8960 17920

Volume size 1024x1024x1024 2048x1024x1024 2048x2048x1024

Data size (GB) 160 320 640

ü Reduces write response time by 7.3%, 14.8%, and 5.4% as compared to full erasure coding on three scales respectively.

Cumulative read response time

ü CoREC has better performance than full erasure coding in real large scale workflows.



ü Increases read response time up to 9.58% and 6.77% in degraded mode and lazy recovery mode as compared to baseline.
ü CoREC can tolerate high frequent process/node failures under light overhead.

Result:

Experimental Evaluation
q Node Failures Experiments
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Total number of failures 8 (1 node, MTBF150) ~ 64 (8 nodes, MTBF18)

Baseline:  FF: CoREC failure free 
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ü Replication cost increase from 3.2Gb to 2.576Gb, and the erasure coding cost from 1.92Gb to 2.683Gb.
ü CoREC-Multilevel provides multiple data redundancy with acceptable storage and computation overhead.

Experimental Evaluation
q Multilevel Data Redundancy Experiments
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Synthetic workflow on Titan Cray XK7
Data Size 3.2GB
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Result:

Baseline:  CoREC with failure free. 

ü Increase write response time by 2.2%, 4.5%, 3.2% and read response time by 4.1%, 7.9%, 15.5% as compared to failure free.



Summary

• As HPC systems grow and scale and complexity, the impacts of failures (fail-stop failures, 
silent errors) or data inconsistencies can significantly impact in-situ workflows.
– The resiliency of in-situ workflows remains a challenge.

• Addressing resilience for staging-based in-situ workflows:
– CoREC/CoREC-multilevel, a scalable hybrid approach for data staging frameworks that used online data 

access classification to effectively combines replication and erasure codes, and to balance computation 
and storage overheads.

– A staging-based framework for detecting data corruption that uses idle computation resource to 
effectively detect silent errors for in-situ workflows.

– A checkpoint/restart with data logging framework for tight coupled in-situ scientific workflows to enable 
diverse fault tolerance schemes in workflows, while still maintaining crash consistency.

• Solutions integrated as part of the DataSpaces data-staging service. 
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