
Manish Parashar
Director, Scientific Computing & Imaging (SCI) Institute
Chair in Computational Science and Engineering
Presidential Professor, Kahlert School of Computing
University of Utah

 PASC 2023, Davos, Switzerland
 June 26, 2023

Shaohua Duan, Pradeep Subedi, Philip E. Davis,
& Keita Teranishi

On the Role of Robust Staging Services for
Extreme-scale In-Situ Workflows

Scientific Computing & Imaging (SCI) Institute

Goal: Transformation of science and
society through translational research
and innovation in computer,
computational and data science
• Multidisciplinary, convergent,

collaborative
• Simulation, imaging, visualization,

data management/analytics,
advanced computing

• Software/system development and
distribution

Ranked #1 in Visualization + High-Performance Computing on http://csrankings.org/

Scientific Computing & Imaging (SCI) Institute

Goal: Transformation of science and
society through translational research
and innovation in computer,
computational and data science

Outline

• Introduction: In-situ Workflows, Data Staging, and Resilience

• Towards Resilient Staging-based In-Situ Workflows

• CoREC: A Scalable and Resilient In-memory Data Staging

• Conclusion

Combustion DNS-LES Coupling Workflow Combustion simulation-visualization workflow

Coupled Scientific Workflows at Extreme Scales
• Advanced scientific simulations running at extreme scale on high end systems generate

large amounts of data
• Transporting and processing data to realize insights is expensive (performance, energy)

• In-situ workflows compose of multiple applications running on the same system that
efficiently interact and exchange data at runtime
• Multi-physics multi-model code coupling (Combustion DNS-LES)

• Online data analysis/visualization (Combustion simulation-visualization)

Simulation VisualizationCoupled Simulation

Staging Based In-Situ Workflows
• Data staging techniques provide effective solutions to enable in-situ workflows to efficiently

interact and exchange data at runtime
– In-memory storage distributed across set of cores/nodes
– Support runtime data processing, sharing and exchange

Execution time
Data reading
Data writing

Analytic/
Visualization

Simulation

Data Objects

In Memory Data
Staging

Data staging
(DataSpaces)

dspaces_put()

dspaces_get() dspaces_get() dspaces_get()

dspaces_put()dspaces_put()

dspaces_get()

dspaces_put()

time

Coupled Simulations/
Analytic/Visualization

Simulation

l Virtual shared-space programming abstraction
l Simple API for coordination, interaction and messaging

l Distributed, associative, in-memory object store
l Online data indexing, flexible querying

l Autonomic (cross-layer) runtime management
l Hybrid in-situ/in-transit execution

l High-throughput/low-latency asynchronous data transport

The DataSpaces Abstraction

DataSpaces: Data Staging Service for In-Situ Workflows

q Fail-stop Failure, Silent Errors in Current Systems
üTitan: MTBF = 8 h, the longest period without any failures 24h (2014).
üJaguar (18688 nodes): silent errors have been observed once per day (2010).

üHopper (6000 nodes): encounters ~32 FITs per DRAM device (2015).

q For Extreme Scale Systems
üThe estimated MTBF would be in minutes.

A Silent Error (also known as Silent Data Corruption) is an unintentional change
to bits (1 -> 0 or 0 -> 1) in memory which can impact correctness and performance
of applications.

Data based on available public records in:
D. Tiwari, S. Gupta, S. S. Vazhkudai. “Lazy checkpointing: Exploiting temporal locality in failures to mitigate checkpointing overheads on extreme-scale systems.” DSN 2014
V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and S. Gurumurthi. “Memory errors in modern systems: The good, the bad, and the ugly”. In
Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’15), March 2015.

Failures in Extreme Scale Systems

Introduction

Failure Frequency for Extreme Scale Systems
MTBF per node 1 year 10 years 100 years

MTBF for 10^5 nodes system 5.3 min 53 min 9 h

MTBF for 10^6 nodes system 32 sec 5.3 min 53 min

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4G 8G 16G 32G

Ti
m

e
(s

ec
)

Data Size

Exec Exec-CoREC Exec-check Checkpoint Restart

Data Resilience for Data Staging

Introduction

q Checkpoint/Restart Approach for Implementing Resilient Data Staging

q Checkpointing the Data in Data Staging to PFS
Coupled S3D simulation visualization workflow

q Case Study 1:
• Workflow run on the Titan Cray XK7 system.
• Checkpoint 4Gb~32Gb data in data staging

to PFS in every 5 mins (total 17~20 times).

Observation:
• It took ∼ 15.6% of the workflow run-time to

achieve fault tolerance for just the staging in
the maximum case.

Execution time
Data reading
Data writing

Visualization

S3D simulation

Data staging
(DataSpaces)

dspaces_put()

dspaces_get() dspaces_get() dspaces_get()

dspaces_put()dspaces_put()

dspaces_get()

dspaces_put()

time Checkpointing
CC C C

C

Execution time
Data reading
Data writing

Visualization

S3D simulation

Data staging
(DataSpaces)

dspaces_put()

dspaces_get() dspaces_get() dspaces_get()

dspaces_put()dspaces_put()

dspaces_get()

dspaces_put()

time
Rollback restart
Fail-stop failure

C C C C

C C C

Failure Recovery for In-situ Workflows
• Crash Consistency

– Coupled applications exchanging large mount of data in extreme scale. To keep data consistency during failure
recovery is challenging.

Individual checkpoint/restart for applications in workflows ü Read the wrong version
of data (Case 1).

Case1

wrong read

Case2

unnecessary write

ü Unnecessarily write data
twice (Case 2).

• Diversification of Fault Tolerance Strategies
• Allow diversification of fault tolerance strategy among different components (E.g., Process

replication, Checkpoint/restart, ABFT).

Execution time
Data reading
Data writing

Visualization

S3D simulation

Data staging
(DataSpaces)

dspaces_put()

dspaces_get() dspaces_get() dspaces_get()

dspaces_put()dspaces_put()

dspaces_get()

dspaces_put()

time

Error Detection for In-situ Workflows

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0

5

10

15

20

25

30

35

40

45

8 16 24 32 40 48 56 64

CP
U

ut
ili

zt
io

n
in

 st
ag

in
g

se
rv

er
 (%

)

DS
 w

rit
e

th
ro

ug
hp

ut
 (M

B/
se

c)

Write data size/server.timestep (MB)

DS_Write_Throughput DS_CPU_Util

q Propagation of Silent Errors in Workflows

q Utilizing Idle Compute Resource in Data Staging

Observation: Silent errors are
propagated, making the final result
invalid.

q Case Study 2:
• A synthetic workflow on Titan Cray XK7

system.
• Write 8M~64M data for each staging server

per time step (total 320M~2560M).
Observation:

• CPU utilization remained consistently low
• Maximum CPU utilization 22%

Coupled S3D simulation visualization workflow

Error propagation
Silent error

Resilient In-Situ Workflows: Requirements/Challenges

The final results of the overall computation for workflows is the outputs of the
workflow, and failures (fail-stop failures, silent errors) or data inconsistency in
any component of the workflow can invalidate these outputs

Requirements/challenges include:
• Managing data resilience in staging with high-performance, low overhead, and minimize the

inference for regular data operation of staging
• Providing a general transparent error detection framework for workflows to prevent the

propagation of these errors between components
• A loosely coupled fault tolerance mechanism to minimize the inference between

components, while still maintaining the consistent states of workflows

Towards Resilient Staging-based In-Situ Workflows

• Design and implementation of CoREC, a hybrid erasure coding scheme that provides scalable
data resilience and failures recovery for data staging.
– [IPDPS18] “Scalable data resilience for in- memory data staging”, in Proceedings of the 32th IEEE

International Parallel and Distributed Processing Symposium (IPDPS’18), pages 105–115, May 2018.
– [TOPC20] “CoREC: Scalable and Resilient In-Memory Data Staging for In-Situ Workflows”, in International

Journal of ACM Transactions on Parallel Computing, May 2020.

• Design and implementation of an in-staging error detection framework that provides data
verification for staging based in-situ workflows.
– [SC’19] “Addressing Data Resiliency for Staging Based Scientific Workflows”, in Proceedings of the

International Conference on High Performance Computing, Networking, Storage and Analysis (SC), 2019
International Conference, November 2019.

• Design and implementation of checkpoint/restart with data logging framework for in-situ
scientific workflows that effectively maintain crash consistency during recovery.
– [HIPS20] “Scalable Crash Consistency for Staging-based In-situ Scientific Workflows”, in 25th Proceedings

of the International Workshop on High-Level Parallel Programming Models and Supportive Environments
(HIPS), May 2020.

Shaohua Duan

q A hybrid approach to data resilience for staging-based workflows

q Leverages data classification for intelligent decision making
ü Spatial/Temporal Data Locality

ü Hot data Replication
ü Cold Data Erasure Coding

Dynamic hybrid Erasure Codes & Replication

Data Set Fault Tolerance Method Set

Hot Write Data

Cold Data Erasure code

N-way Replication

fre
qu

en
cy

pe
rf

or
m

an
ce

CoREC (Combining Replication and Erasure Coding)

Data Objects

In Memory Data Staging

Redundant Data
Objects

Hybrid Erasure
Coding

Cold Data Object:
Hot Data Object:

Parity Object:
Replica:

qHot/Cold data:
If a data object has been recently accessed more than a
number of times within a certain time interval it is considered
as hot data, otherwise it is considered as cold data.

Data Set Fault Tolerance Method Set

High Available
Data

Low Alailable
Data

Replication,
RS(4, 3)

Triplication,
RS(6, 4)

Da
ta

 re
lia

bi
lit

y
re

qu
es

t

Le
ve

l o
f d

at
a

re
du

nd
an

cy

Multi-level Erasure Codes & Replication

CoREC-multilevel (CoREC with multilevel data redundancy)
q Provide different levels of data reliability with an acceptable overall costs and the associated

trade-off of achieved resilience, overheads, performance, storage etc.

q Vary data redundancy scheme (n-way replications and erasure coding schemes) based on
the requirements of data resilience level.

ü High reliability data -> Triplication, RS(6, 4)
ü Low reliability data -> Duplication, RS(4, 3)

Data Objects

In Memory Data Staging

Redundant Data
Objects

Hybrid Erasure
Coding

Low Available Data Object:
High Available Data Object:

Replica:
Replica:

𝐶! 𝐶" : Time Complexity of replication / erasure coding
𝑓# 𝑓$: Frequency of updates for hot / cold data
𝑃# 𝑃$: Percentage of hot / cold data
𝑛: The scale of workload
𝑟!: Miss ratio

= 𝐶!𝑓" − 𝐶#𝑓$ + 𝐶# − 𝐶! 𝑓"𝑟% 𝑛𝑃" + 𝐶#𝑓$𝑛

𝐶&'()& = 𝐶!𝑓"𝑛𝑃" + 𝐶#𝑓$𝑛𝑃$
= 𝐶!𝑓" − 𝐶#𝑓$ 𝑛𝑃" + 𝐶#𝑓$𝑛

𝑃$ = 1 − 𝑃#
𝐶" − 𝐶! 𝑓#𝑟%𝑛𝑃#

Modeling the CoREC / CoREC-multilevel Approach
q A time complexity of CoREC:

q A time complexity of CoREC-multilevel:

𝐶&'()&* =)𝐶!𝑓" −)𝐶#𝑓$ +)𝐶# −)𝐶! 𝑓"𝑟% 𝑛𝑃" +)𝐶#𝑓$𝑛

)𝐶! = 𝑃!+𝐶!+ + 𝑃!,𝐶!, +⋯+ 𝑃!-𝐶!-
)𝐶# = 𝑃#+𝐶#+ + 𝑃#,𝐶#, +⋯+ 𝑃#-𝐶#-

1

16

14

13

12 10
9

3

R1 Replication group

C1 Coding group

1 Staging server2

11

15

4

5

7

8

6

R1
R2

R3

R4

C2

C4

1 9

Node 1

R8

C3

R7

C1

grouping

5 13

2 10

Node 2

6 14

3 11

Node 3

7 15

4 12

Node 4

8 16
R6

R5

Physical layout
Grouped replication & erasure coding

Data Objects, Replicas and Parity layout in data staging.
(replication group size k= 2, Erasure coding group size n= 4).

Advantage: tolerate concurrent correlated staging server failures
(e.g., Node 1 failure).

An encoding workflow with 1 server and 1 paired server
(replication group size = 2).

Advantage: keep parity object consistency;
Balance staging server workload within group.

Grouped Replication & Erasure Coding Load balancing and conflict avoid encoding

Update metadata

Data encoding

Object partition, fitting, shaping

Send objects to group server

low

Grouped Server 0

work load
measurement

Client: object put request

Grouped Server 1 (helper server)

Object

Save object to local

metadata

Data flow:
Work flow:

Keep token

Data classification
Send replica

hot

cold
Encoding

Update metadata

Data encoding

Object partition, fitting, shaping

Send objects to group server

low

work load
measurement

Client: object put request

Object

Save object to local

metadata

Keep token

Data classification
Send replica

hot

cold
Encoding

Node failure

The System Design of CoREC

comm

Communication / failure detection

1 Staging server process

1 52 3

Inject failures

4

1 52 3 4

1 53

1 3 ?5 ?

1 52 3 4

1 52 3 4

commcomm

comm

commcomm

comm

Idle staging server process?

Data staging area

Failure detection

Degraded mode

Lazy recovery mode

New data staging area

Process recovery

q Failure detection: Detecting failures by RDMA connection
error codes, and handling failures through ULFM-enabled MPI.

q Degraded mode: Only the requested data is re-constructed,
sent to the application and discarded.

q Process recovery: The same number of backup staging
processes are activated and merged with the existing data
staging process group.

q Lazy recovery mode: Each object on the failed server will be
recovered immediately after it is queried or updated. The
recovery of all other remaining objects are triggered based on
the time-limit set for delayed data recovery.

Advantage: Alleviate data-recovery overheads and interference
with data-reads requests.

The System Design of CoREC

Data and process recovery in data staging area.

Recovering Data Staging Server from Failures

q Local Object Management
ü Local data objects classification and data

objects, replicas, parities, metadata’s storage.
ü Jerasure open-source library for encoding and

decoding.
q Object Transportation

ü Data objects, replicas, parities, metadata’s
synchronization and transportation.

q System Status Monitor
ü Staging server’s workload monitoring, failure

detection and recovery initiation.
q Process Resiliency

ü Manages a spare process pool and
implements the detection and handling of
staging server failures using ULFM.

System Architecture of CoREC.

The System Implementation of CoREC

Coordination Layer

DART/Data Communication Layer (RDMA)

Staging Server

Jerasure Library

Data Resiliency
Module

Application Interface

Object
Transportation Coordination Layer

Client

Query Engine, Data Indexing

Parity Object

Data Storage Layer

Data Object

Object
Management

System Monitor

New/Update component :
Existing component :

Process Resiliency Module (ULFM)

Titan, Cray XK7
• 18,688 nodes
• Gemini interconnect
• 16-core AMD 6200 series Opteron processor
• 32GB memory per node, 600 TB system memory

Cori, Cray XC40
• 622,336 Cores
• Aries interconnect
• Intel Xeon Phi 7250 68Cores 1.4GHz
• 878,592 GB system memory

q Synthetic Experiments: 5 cases with data read/write patterns from real scientific workflows.

Result:
ü CoREC improves 13.8%, 5.8% relative to Erasure and Hybrid (in Case 4).

0

0.05

0.1

0.15

0.2

0.25

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

DataS

DataS_P FS

DataS_BB

Re pl ic
ate

Erasur e

Hybr id
CoREC

W
rit

e
ef

fic
ie

nc
y

W
rit

e
re

sp
on

se
 t

im
e

(s
ec

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

DataS

DataS_P FS

DataS_BB

Re pl ic
ate

Erasur e

Hybr id

CoREC

W
rit

e
ef

fic
ie

nc
y

W
rit

e
re

sp
on

se
 t

im
e

(s
ec

)

0

0.05

0.1

0.15

0.2

0.25

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

DataS

DataS_P FS

DataS_BB

Re pl ic
ate

Erasur e

Hybr id
CoREC

W
rit

e
ef

fic
ie

nc
y

W
rit

e
re

sp
on

se
 t

im
e

(s
ec

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

DataS

DataS_P FS

DataS_BB

Re pl ic
ate

Erasur e

Hybr id
CoREC

W
rit

e
ef

fic
ie

nc
y

W
rit

e
re

sp
on

se
 t

im
e

(s
ec

)

Case 1 Case 2

Case 3 Case 4

Case # Description
1 Write the entire data domain in each time step.

2 Write the entire data domain in multiple time steps.

3 Write a subset of the data domain at a higher frequency
than others.

4 Write subsets of the data domain with random access
pattern.

Write efficiency = Write response time/Storage Efficiency (lower is better)

Experimental Evaluation

Baselines: DataS: Data Staging without fault tolerance; Replicate: In-memory
Replication; Erasure: In-memory Erasure coding; Hybrid: Simple Hybrid
erasure coding with LRU; _PFS: Parallel File System; _BB: Burst Buffer;

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

DataS

DataS_
PF

S

DataS_
BB

Repli
cat

e

Erasure

Hybrid

CoREC

W
rit

e
ef

fic
ie

nc
y

W
rit

e
re

sp
on

se
 t

im
e

(s
ec

)

Case 4
ü CoREC gets better performance than Erasure and Hybrid in 4 Cases.

Case 5

CoREC+1d or 2d: in degraded mode with 1 or 2 failures
CoREC+1f or 2f: in lazy recovery mode with 1 or 2 failures

Experimental Evaluation
q Synthetic Experiments: 5 cases with data read/write patterns from real scientific workflows.

Result:
ü Degraded mode: read response time increases by 4.11% (CoREC+1f), 23.4% (CoREC+2f) as compared to failure-free.
ü Lazy recovery: read response time increases only by 2.41% (CoREC+1d), 8.43% (CoREC+2d) as compared to failure-free.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

DataS

DataS_
PF

S

DataS_
BB

Repli
cat

e

Erasure

Hybrid

CoREC

Erasure+
1f

CoREC
+1d

CoREC
+1f

Erasure+
2f

CoREC
+2d

CoREC
+2f

Re
ad

 re
sp

on
se

 ti
m

e
(s

ec
)

ü Lazy recovery mode significantly reduces the failure recovery overhead.

Case # Description
5 Read the entire data domain in each time step.

ü Reduces read response time by up to 40.8% and 37.4% for one and two failures respectively.

Result:

0

0.5

1

1.5

2

2.5

3

3.5

4

4480 8960 17920

Re
ad

 T
im

e
(s

ec
)

No. of cores

S3D disk DataSpaces Replicate Erasure CoREC
Erasure+1f CoREC+1f Erasure+2f CoREC+2f

21.5436 sec 22.7551 sec 26.8691 sec

0
2
4
6
8

10
12
14
16
18
20
22

4480 8960 17920

W
rit

e
Ti

m
e

(s
ec

)

No. of cores

S3D disk DataSpaces Replicate Erasure CoREC

Erasure+1f CoREC+1f Erasure+2f CoREC+2f

166.46 sec
234.42 sec

346.68 sec

Cumulative write response time

Experimental Evaluation

q Real Experiments: S3D workflows

S3D combustion simulation analysis workflow on Titan Cray XK7
No. of cores 4480 8960 17920

Volume size 1024x1024x1024 2048x1024x1024 2048x2048x1024

Data size (GB) 160 320 640

ü Reduces write response time by 7.3%, 14.8%, and 5.4% as compared to full erasure coding on three scales respectively.

Cumulative read response time

ü CoREC has better performance than full erasure coding in real large scale workflows.

ü Increases read response time up to 9.58% and 6.77% in degraded mode and lazy recovery mode as compared to baseline.
ü CoREC can tolerate high frequent process/node failures under light overhead.

Result:

Experimental Evaluation
q Node Failures Experiments

3

3.5

4

4.5

5

5.5

FF 15 0 75 50 35 30 25 20 18

W
rit

e
re

sp
on

se
 ti

m
e

(s
ec

)

MTBF (sec)

1 2 3
4 5 6 7 8

0

Failure Free lazy mode degraded mode

16 0

16 5

17 0

17 5

18 0

18 5

FF 15 0 75 50 35 30 25 20 18

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
)

MTBF (sec)

1 2 3 4 5
6

7
8

0

lazy mode degraded modeFailure Free

30

35

40

45

50

55

FF 15 0 75 50 35 30 25 20 18

Re
ad

 re
sp

on
se

 ti
m

e
(s

ec
)

MTBF (sec)

1 2 3 4 65
7 8

0

Failure Free lazy mode degraded mode

Synthetic workflow on Caliburn
Data Size 3.2GB

No. of staging cores (nodes) 256 (32 nodes)

Total number of failures 8 (1 node, MTBF150) ~ 64 (8 nodes, MTBF18)

Baseline: FF: CoREC failure free

Cumulative write response timeCumulative read response time Workflow execution time

ü Replication cost increase from 3.2Gb to 2.576Gb, and the erasure coding cost from 1.92Gb to 2.683Gb.
ü CoREC-Multilevel provides multiple data redundancy with acceptable storage and computation overhead.

Experimental Evaluation
q Multilevel Data Redundancy Experiments

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 10% 20% 30%

W
rit

e
re

sp
on

se
 ti

m
e

(s
ec

)

Percentage of high data redundancy

0

0.5

1

1.5

2

2.5

3

0% 10% 20% 30%

Re
ad

 re
sp

on
se

 ti
m

e
(s

ec
)

Percentage of high data redundancy

Failure Free 2 Failures

0:10 1:9 2:8 3:7

0

20

40

60

80

100

120

1400.00

1900.00

2400.00

2900.00

3400.00

3900.00

0% 10% 20% 30%

St
or

ag
e

ef
fic

ie
nc

y
(%

)

M
em

or
y

si
ze

 (M
B)

Percentage of high data redundancy

Duplication Triplicat ion RS(6,1)

RS(6,2) Replicat ion Erasure coding

Synthetic workflow on Titan Cray XK7
Data Size 3.2GB

Low data redundancy Duplication RS(6, 5)

High data redundancy Triplication RS(6, 4)
Result:

Baseline: CoREC with failure free.

ü Increase write response time by 2.2%, 4.5%, 3.2% and read response time by 4.1%, 7.9%, 15.5% as compared to failure free.

Summary

• As HPC systems grow and scale and complexity, the impacts of failures (fail-stop failures,
silent errors) or data inconsistencies can significantly impact in-situ workflows.
– The resiliency of in-situ workflows remains a challenge.

• Addressing resilience for staging-based in-situ workflows:
– CoREC/CoREC-multilevel, a scalable hybrid approach for data staging frameworks that used online data

access classification to effectively combines replication and erasure codes, and to balance computation
and storage overheads.

– A staging-based framework for detecting data corruption that uses idle computation resource to
effectively detect silent errors for in-situ workflows.

– A checkpoint/restart with data logging framework for tight coupled in-situ scientific workflows to enable
diverse fault tolerance schemes in workflows, while still maintaining crash consistency.

• Solutions integrated as part of the DataSpaces data-staging service.

Thank you!

Manish Parashar
Email: manish.parashar@utah.edu
WWW: manishparashar.org
dataspaces.org

Pradeep Subedi, Philip Davis, Daniel Balouek-Thomert, Zhe Wang,
Bo Zhang, and many students and collaborators

