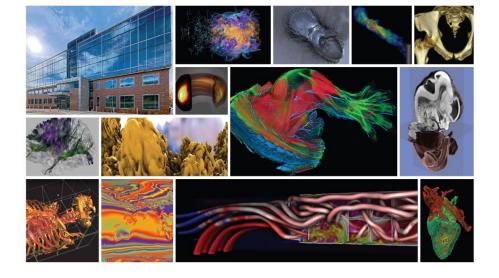
On the Role of Robust Staging Services for Extreme-scale In-Situ Workflows

Manish Parashar

Director, Scientific Computing & Imaging (SCI) Institute Chair in Computational Science and Engineering Presidential Professor, Kahlert School of Computing University of Utah

PASC 2023, Davos, Switzerland June 26, 2023

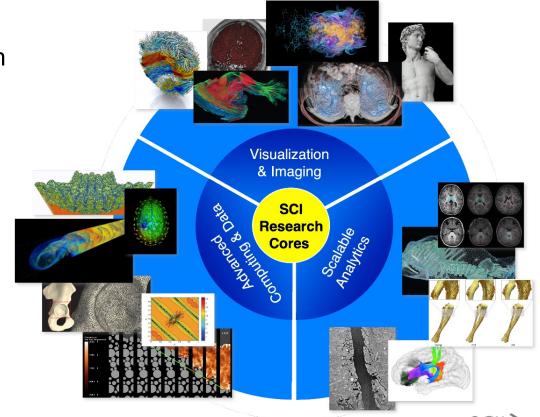
Shaohua Duan, Pradeep Subedi, Philip E. Davis, & Keita Teranishi



Scientific Computing & Imaging (SCI) Institute

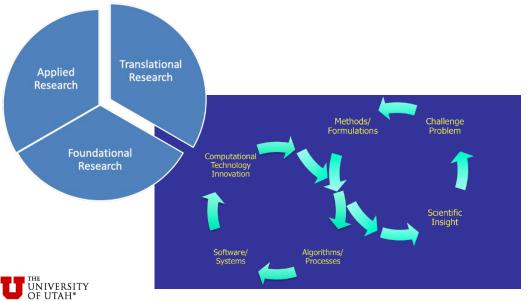
Goal: Transformation of science and society through translational research and innovation in computer, computational and data science

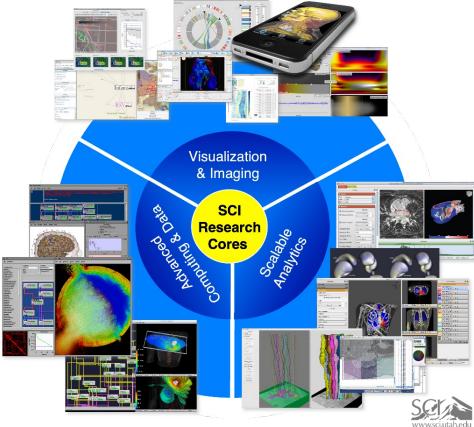
- Multidisciplinary, convergent, collaborative
- Simulation, imaging, visualization, data management/analytics, advanced computing
- Software/system development and distribution



Scientific Computing & Imaging (SCI) Institute

Goal: Transformation of science and society through *translational research* and innovation in computer, computational and data science



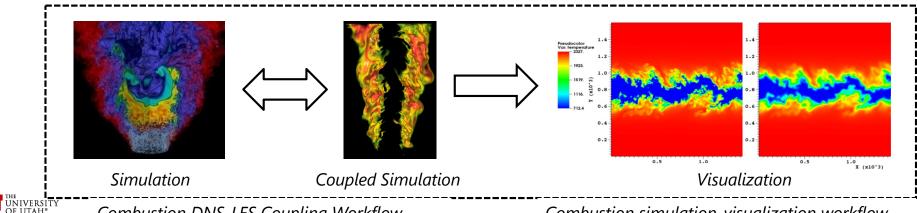


Outline

- Introduction: In-situ Workflows, Data Staging, and Resilience
- Towards Resilient Staging-based In-Situ Workflows
- CoREC: A Scalable and Resilient In-memory Data Staging
- Conclusion

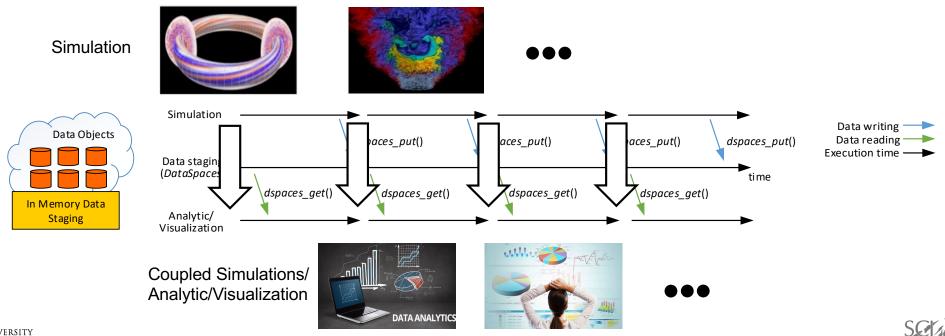
Coupled Scientific Workflows at Extreme Scales

- Advanced scientific simulations running at extreme scale on high end systems generate large amounts of data
 - Transporting and processing data to realize insights is expensive (performance, energy)
- In-situ workflows compose of multiple applications running on the same system that efficiently interact and exchange data at runtime
 - Multi-physics multi-model code coupling (Combustion DNS-LES)
 - Online data analysis/visualization (Combustion simulation-visualization)

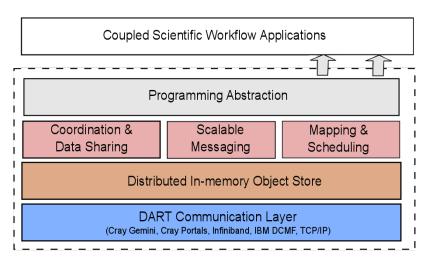


Staging Based In-Situ Workflows

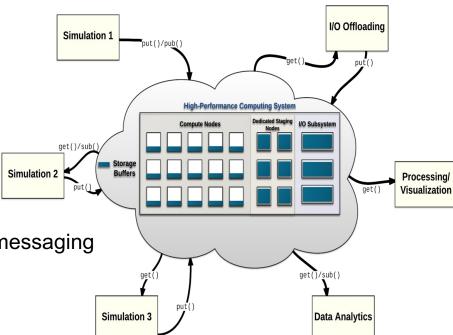
- Data staging techniques provide effective solutions to enable in-situ workflows to efficiently interact and exchange data at runtime
 - In-memory storage distributed across set of cores/nodes
 - Support runtime data processing, sharing and exchange



DataSpaces: Data Staging Service for In-Situ Workflows



The DataSpaces Abstraction

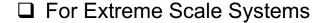


- Virtual shared-space programming abstraction
 - Simple API for coordination, interaction and messaging
- Distributed, associative, in-memory object store
 - Online data indexing, flexible querying
- Autonomic (cross-layer) runtime management
 - Hybrid in-situ/in-transit execution
- High-throughput/low-latency asynchronous data transport

Introduction

Failures in Extreme Scale Systems

- ☐ Fail-stop Failure, Silent Errors in Current Systems
 - ✓ **Titan**: MTBF = 8 h, the longest period without any failures 24h (2014).
 - √ Jaguar (18688 nodes): silent errors have been observed once per day (2010).
 - √ Hopper (6000 nodes): encounters ~32 FITs per DRAM device (2015).



√ The estimated MTBF would be in minutes.

Failure Frequency for Extreme Scale Systems				
MTBF per node	1 year	10 years	100 years	
MTBF for 10^5 nodes system	5.3 min	53 min	9 h	
MTBF for 10^6 nodes system	32 sec	5.3 min	53 min	

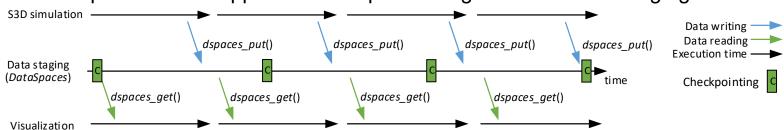
A **Silent Error** (also known as **Silent Data Corruption**) is an unintentional change to bits (1 -> 0 or 0 -> 1) in memory which can impact correctness and performance of applications.

Data based on available public records in:

D. Tiwari, S. Gupta, S. S. Vazhkudai. "Lazy checkpointing: Exploiting temporal locality in failures to mitigate checkpointing overheads on extreme-scale systems." DSN 2014 V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and S. Gurumurthi. "Memory errors in modern systems: The good, the bad, and the ugly". In Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS'15), March 2015.

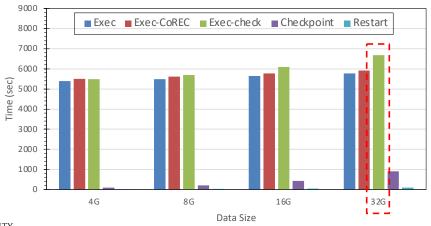
Data Resilience for Data Staging

☐ Checkpoint/Restart Approach for Implementing Resilient Data Staging



Coupled S3D simulation visualization workflow

☐ Checkpointing the Data in Data Staging to PFS



☐ Case Study 1:

- Workflow run on the Titan Cray XK7 system.
- Checkpoint 4Gb~32Gb data in data staging to PFS in every 5 mins (total 17~20 times).

Observation:

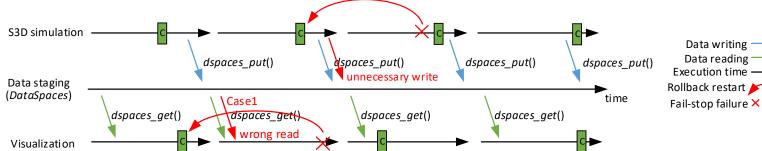
• It took \sim 15.6% of the workflow run-time to achieve fault tolerance for just the staging in the maximum case.

Failure Recovery for In-situ Workflows

Crash Consistency

Coupled applications exchanging large mount of data in extreme scale. To keep data consistency during failure

recovery is challenging.



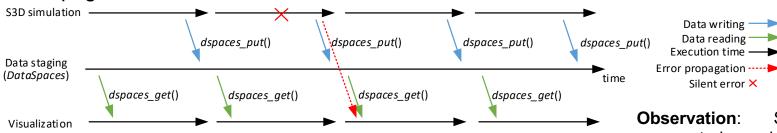
Individual checkpoint/restart for applications in workflows

- ✓ Read the wrong version of data (Case 1).
- ✓ Unnecessarily write data twice (Case 2).

- Diversification of Fault Tolerance Strategies
 - Allow diversification of fault tolerance strategy among different components (E.g., Process replication, Checkpoint/restart, ABFT).

Error Detection for In-situ Workflows

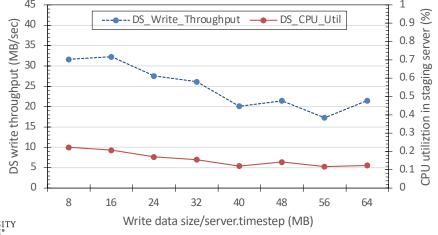
☐ Propagation of Silent Errors in Workflows



Coupled S3D simulation visualization workflow

Observation: Silent errors are propagated, making the final result invalid.

☐ Utilizing Idle Compute Resource in Data Staging



☐ Case Study 2:

- A synthetic workflow on Titan Cray XK7 system.
- Write 8M~64M data for each staging server per time step (total 320M~2560M).

Observation:

- · CPU utilization remained consistently low
- Maximum CPU utilization 22%

Resilient In-Situ Workflows: Requirements/Challenges

The final results of the overall computation for workflows is the outputs of the workflow, and failures (fail-stop failures, silent errors) or data inconsistency in any component of the workflow can invalidate these outputs

Requirements/challenges include:

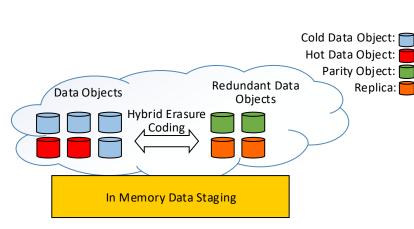
- Managing data resilience in staging with high-performance, low overhead, and minimize the inference for regular data operation of staging
- Providing a general transparent error detection framework for workflows to prevent the propagation of these errors between components
- A loosely coupled fault tolerance mechanism to minimize the inference between components, while still maintaining the consistent states of workflows

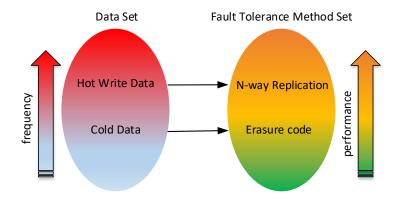
Towards Resilient Staging-based In-Situ Workflows

- Shaohua Duan
- Design and implementation of CoREC, a hybrid erasure coding scheme that provides scalable data resilience and failures recovery for data staging.
 - [IPDPS18] "Scalable data resilience for in- memory data staging", in Proceedings of the 32th IEEE International Parallel and Distributed Processing Symposium (IPDPS'18), pages 105–115, May 2018.
 - [TOPC20] "CoREC: Scalable and Resilient In-Memory Data Staging for In-Situ Workflows", in International Journal of ACM Transactions on Parallel Computing, May 2020.
- Design and implementation of an in-staging error detection framework that provides data verification for staging based in-situ workflows.
 - [SC'19] "Addressing Data Resiliency for Staging Based Scientific Workflows", in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC), 2019 International Conference, November 2019.
- Design and implementation of checkpoint/restart with data logging framework for in-situ scientific workflows that effectively maintain crash consistency during recovery.
 - [HIPS20] "Scalable Crash Consistency for Staging-based In-situ Scientific Workflows", in 25th Proceedings of the International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS), May 2020.

CoREC (Combining Replication and Erasure Coding)

- ☐ A hybrid approach to data resilience for staging-based workflows
- Leverages data classification for intelligent decision making
 - ✓ Spatial/Temporal Data Locality
 - ✓ Hot data
 → Replication
 - ✓ Cold Data → Erasure Coding





□Hot/Cold data:

If a data object has been recently accessed more than a number of times within a certain time interval it is considered as hot data, otherwise it is considered as cold data.

Corec-multilevel (Corec with multilevel data redundancy)

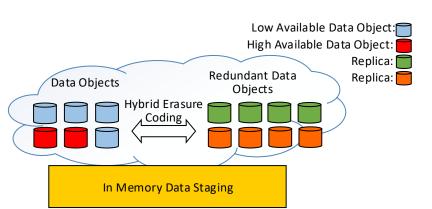
☐ Provide different levels of data reliability with an acceptable overall costs and the associated trade-off of achieved resilience, overheads, performance, storage etc.

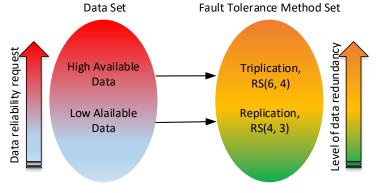
☐ Vary data redundancy scheme (n-way replications and erasure coding schemes) based on

the requirements of data resilience level.

✓ High reliability data -> Triplication, RS(6, 4)

✓ Low reliability data -> Duplication, RS(4, 3)





Modeling the CoREC / CoREC-multilevel Approach

■ A time complexity of CoREC:

$$C_{COREC} = C_r f_h n P_h + C_e f_c n P_c$$

$$= (C_r f_h - C_e f_c) n P_h + C_e f_c n$$

$$= (C_r f_h - C_e f_c + (C_e - C_r) f_h r_m) n P_h + C_e f_c n$$

$$(C_e - C_r) f_h r_m n P_h$$

 C_r C_e : Time Complexity of replication / erasure coding

 f_h f_c : Frequency of updates for **h**ot / **c**old data

 P_h P_c : **P**ercentage of **h**ot / **c**old data

n: The scale of workload

 r_m : Miss ratio

☐ A time complexity of CoREC-multilevel:

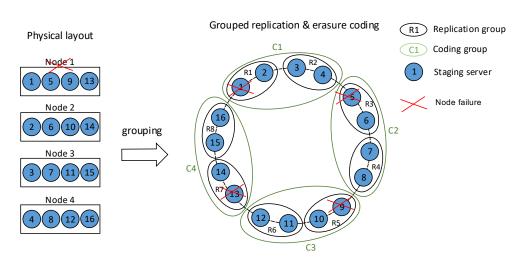
$$C_{CORECM} = \left(\widetilde{C_r}f_h - \widetilde{C_e}f_c + \left(\widetilde{C_e} - \widetilde{C_r}\right)f_hr_m\right)nP_h + \widetilde{C_e}f_cn$$

$$\widetilde{C_r} = P_{r1}C_{r1} + P_{r2}C_{r2} + \dots + P_{rn}C_{rn}$$

$$\widetilde{C_e} = P_{e1}C_{e1} + P_{e2}C_{e2} + \dots + P_{en}C_{en}$$

The System Design of CoREC

Grouped Replication & Erasure Coding

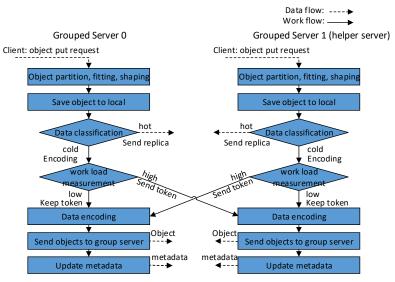


Data Objects, Replicas and Parity layout in data staging. (replication group size k= 2, Erasure coding group size n= 4).

Advantage: tolerate concurrent correlated staging server failures (e.g., Node 1 failure).

UNIVERSITY OF UTAH®

Load balancing and conflict avoid encoding

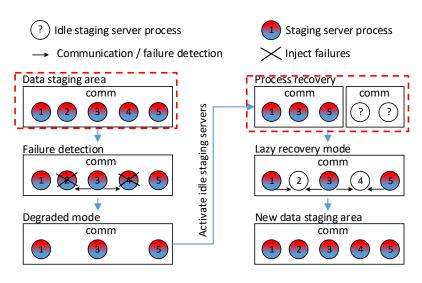


An encoding workflow with 1 server and 1 paired server (replication group size = 2).

Advantage: keep parity object consistency; Balance staging server workload within group.

The System Design of CoREC

Recovering Data Staging Server from Failures

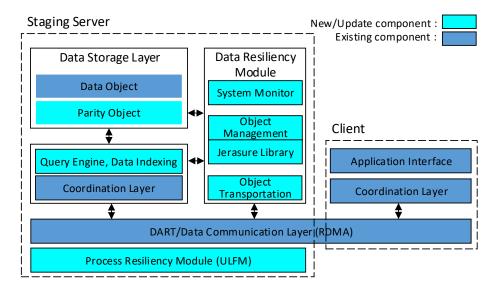


Data and process recovery in data staging area.

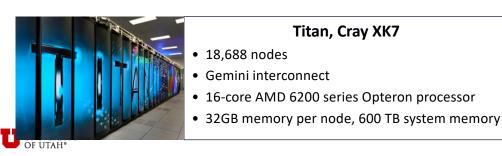
- ☐ Failure detection: Detecting failures by RDMA connection error codes, and handling failures through ULFM-enabled MPI.
- **Degraded mode**: Only the requested data is re-constructed, sent to the application and discarded.
- ☐ Process recovery: The same number of backup staging processes are activated and merged with the existing data staging process group.
- □ Lazy recovery mode: Each object on the failed server will be recovered immediately after it is queried or updated. The recovery of all other remaining objects are triggered based on the time-limit set for delayed data recovery.

Advantage: Alleviate data-recovery overheads and interference with data-reads requests.

The System Implementation of CoREC



System Architecture of CoREC.



□ Local Object Management

- ✓ Local data objects classification and data objects, replicas, parities, metadata's storage.
- ✓ Jerasure open-source library for encoding and decoding.

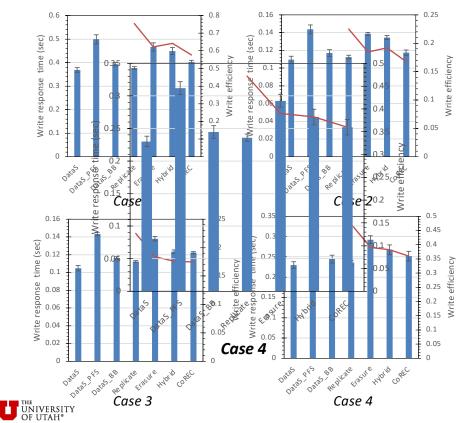
☐ Object Transportation

- ✓ Data objects, replicas, parities, metadata's synchronization and transportation.
- **☐** System Status Monitor
 - ✓ Staging server's workload monitoring, failure detection and recovery initiation.
- □ Process Resiliency
 - ✓ Manages a spare process pool and implements the detection and handling of staging server failures using ULFM.

Cori, Cray XC40

- 622,336 Cores
- Aries interconnect
- Intel Xeon Phi 7250 68Cores 1.4GHz
- 878,592 GB system memory

☐ Synthetic Experiments: 5 cases with data read/write patterns from real scientific workflows.



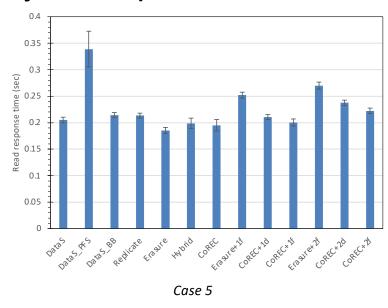
Case #	Description
1	Write the entire data domain in each time step.
2	Write the entire data domain in multiple time steps.
3	Write a subset of the data domain at a higher frequency than others.
4	Write subsets of the data domain with random access pattern.

Write efficiency = Write response time/Storage Efficiency (lower is better)

Baselines: DataS: Data Staging without fault tolerance; Replicate: In-memory Replication; Erasure: In-memory Erasure coding; Hybrid: Simple Hybrid erasure coding with LRU; _PFS: Parallel File System; _BB: Burst Buffer;

- ✓ CoREC improves 13.8%, 5.8% relative to Erasure and Hybrid (in Case 4).
- ✓ CoREC gets better performance than Erasure and Hybrid in 4 Cases.

☐ Synthetic Experiments: 5 cases with data read/write patterns from real scientific workflows.

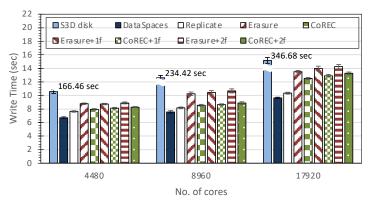


Case #	Description
5	Read the entire data domain in each time step.

CoREC+1d or 2d: in degraded mode with 1 or 2 failures **CoREC+1f or 2f**: in lazy recovery mode with 1 or 2 failures

- ✓ Degraded mode: read response time increases by 4.11% (CoREC+1f), 23.4% (CoREC+2f) as compared to failure-free.
- ✓ Lazy recovery: read response time increases only by 2.41% (CoREC+1d), 8.43% (CoREC+2d) as compared to failure-free.
- ✓ Lazy recovery mode significantly reduces the failure recovery overhead.

☐ **Real Experiments**: S3D workflows



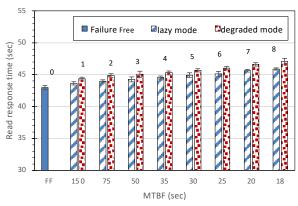
Cumulative write response time

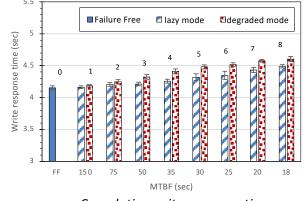
Cumulative read response time

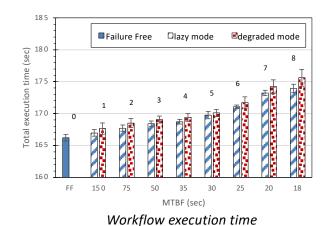
S3D combustion simulation analysis workflow on Titan Cray XK7				
No. of cores	4480	8960	17920	
Volume size	1024x1024x1024	2048x1024x1024	2048x2048x1024	
Data size (GB)	160	320	640	

- ✓ Reduces write response time by **7.3**%, **14.8**%, and **5.4**% as compared to full erasure coding on three scales respectively.
- ✓ Reduces read response time by up to 40.8% and 37.4% for one and two failures respectively.
- ✓ CoREC has better performance than full erasure coding in real large scale workflows.

■ Node Failures Experiments







Cumulative read response time

Cumulative write response time

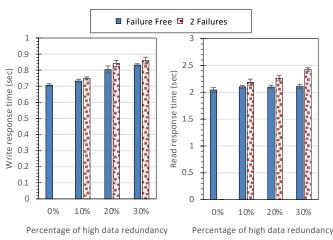
•

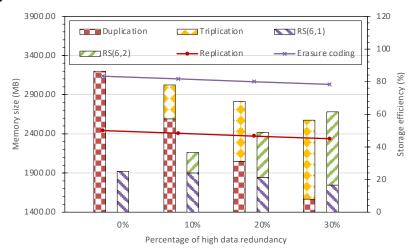
Synthetic workflow on Caliburn			
Data Size	3.2GB		
No. of staging cores (nodes)	256 (32 nodes)		
Total number of failures	8 (1 node, MTBF150) ~ 64 (8 nodes, MTBF18)		

Baseline: FF: CoREC failure free

- ✓ Increases read response time up to 9.58% and 6.77% in degraded mode and lazy recovery mode as compared to baseline.
- ✓ CoREC can tolerate high frequent process/node failures under light overhead.

■ Multilevel Data Redundancy Experiments





Synthetic workflow on Titan Cray XK7			
Data Size	3.2GB		
Low data redundancy	Duplication	RS(6, 5)	
High data redundancy	Triplication	RS(6, 4)	

Baseline: CoREC with failure free.

- ✓ Increase write response time by **2.2%**, **4.5%**, **3.2%** and read response time by **4.1%**, **7.9%**, **15.5%** as compared to failure free.
- ✓ Replication cost increase from **3.2Gb** to **2.576Gb**, and the erasure coding cost from **1.92Gb** to **2.683Gb**.
- Universite Corection and computation overhead.

Summary

- As HPC systems grow and scale and complexity, the impacts of failures (fail-stop failures, silent errors) or data inconsistencies can significantly impact in-situ workflows.
 - The resiliency of in-situ workflows remains a challenge.
- Addressing resilience for staging-based in-situ workflows:
 - CoREC/CoREC-multilevel, a scalable hybrid approach for data staging frameworks that used online data access classification to effectively combines replication and erasure codes, and to balance computation and storage overheads.
 - A staging-based framework for detecting data corruption that uses idle computation resource to effectively detect silent errors for in-situ workflows.
 - A checkpoint/restart with data logging framework for tight coupled in-situ scientific workflows to enable diverse fault tolerance schemes in workflows, while still maintaining crash consistency.
- Solutions integrated as part of the DataSpaces data-staging service.

Thank you!

Email: manish.parashar@utah.edu

WWW: manishparashar.org

dataspaces.org

Pradeep Subedi, Philip Davis, Daniel Balouek-Thomert, Zhe Wang, Bo Zhang, and *many* students and collaborators

