—1

Hewlett Packard
Enterprise

Porting ICON to AMD GPUs: Lessons Learned

Peter Wauligmann, Aniello Esposito
June 27,2023

Infroduction

e The ICOsahedral Non-hydrostatic (ICON) model is a key weather and climate application
e Developed by the German Weather Service (DWD) with a lot of partners (MPI-M, KIT, DKRZ, CSCS, ...

lllustration of spatial discretization in ICON using icosahedrons [1]

e ICON was an important part of the LUMI procurement

e Version: icon-2.6.0 (older than 3 years by now)

e Benchmark: 24 hours simulation using the global RO2B10 grid (2.5 km resolution)
e Hardware: All available nodes of LUMI-G (AMD MI250X GPUs)

: [1] https://www.dwd.de/EN/research/weatherforecasting/num_modelling/bilder/01_icon_modellgitter_en.jpg

ICON‘s programming models and how to port them

e Fortran is the main programming language

e Distributed memory parallelization using MPI

e OpenMP for CPU shared memory parallelization

e OpenACC is used to offload ~1700 kernels to the GPU

e CUDA libraries are used for parallel primitives (NVIDIA's CUB)

Why was porting to AMD MI250X and LUMI a challenge?

CUDA sections had to be ported to HIP

ICON’s GPU version has been exclusive to NVIDIA accelerators so far

Missing compiler support for Fortran + OpenACC + AMD accelerators

HPE extended the Cray Compiling Environment (CCE) to cover the required OpenACC functionality
Early compiler features expectedly contain (performance) bugs

Running at scale on a new system

L A A o

E—

Hipification of CUDA sections

e |CON uses optimized NVIDIA library functions for primitives such as DeviceSelect from CUB
e AMD provides identical functionality in the hipCUB library

MFemenMaFlnn o BERC

JYEEnnn

Functionality provided by DeviceSelect by the CUB library [2]

e Replace ,cuda“ with ,hip“ and all CUDA libraries with ROCM libraries

e Compile with hipcc instead of nvcc

e CCE prefers Fortran device pointer to be passed with TYPE(c_ptr) instead of TYPE(c_devptr)

e On NVIDIA hardware, CUB and OpenACC are performed on the same stream using acc_get_cuda_stream
e HPE compiler team extended CCE by acc_get_hip_stream function

: [2] https://nvlabs.github.io/cub/select_logo.png

Bridging differences between the CCE and NVFORTRAN

e ICONused acc_attach(ptr) which was not part of the OpenACC specification for Fortran
e Replaced acc_attach(ptr) by |$ACC ENTER DATA ATTACH(ptr)
o The latest OpenACC specification from November 2022 introduced an interface for Fortran

e NVIDIA and HPE implement the DEFAULT (NONE) clause differently

« NVFORTRAN requires only the data attributes of arrays
o CCE requires the data attributes of every variable (including scalar variables)

o The latest OpenACC specification comments on this:

“Note: Any default(none) clause visible at the compute construct applies to both aggregate and scalar variables.
However, any default(present) clause visible at the compute construct applies only to aggregate variables.”

Solution 1: Remove all DEFAULT (NONE) clauses

Solution 2: Add (first)private clauses to all compute constructs
Solution 3: Replace every DEFAULT (NONE) clause by DEFAULT(PRESENT)

e The Cray compiler missed some of the required features that were only added in recent CCE versions

E—

Step by step porting technique

compile with =00, synchronous OpenACC,

i scale up testcase
host-based MP|, single rank, small testcase P

A

v <&

<

debug and validate

rofile and optimize
results after each step P P

compile with -02

»
» ‘r

v

enable asynchronous kernel launches enable GPU-GPU communication

run on multiple ranks and nodes

How important are asynchronous OpenACC kernels for ICON?

e |CON most of the kernels into a separate GPU execution stream using ASYNC(1)
e This prevents unnecessary CPU/GPU synchronizations

I$SACC PARALLEL LOOP ASYNC (1)

DOi=1, N
A(i)=A(i)+A (i) *B (i)

ENDDO

ISACC END PARALLEL

1 SACC UPDATE HOST WAIT (1)

Total time
Synchronous Kernels 239 seconds
Asynchronous Kernels 227 seconds

E—

How important is GPU based MPI communication for ICON?

e |[CON uses compiler macros to enable direct GPU to GPU communication
e How much overhead is to be expected when copying data to CPU instead?

#ifdef _ USE_G2G
1SACC HOST DATA USE DEVICE (buffer)
#else
! $ACC UPDATE HOST (buffer)
#endif
CALL mpi_send(buffer, ..)
#ifdef _ USE _G2G
1SACC END HOST DATA

#else
! $ACC UPDATE DEVICE (buffer)
#endif
Total time
Communication via host 343 seconds

Device-based communication 227 seconds

E—

AMD rocProf (rocTracer)

e rocprof is a command line tool developed by AMD for ROCProfiler and rocTracer
e hip tracing adds relatively low amount of overhead to the application (~8% for ICON)
e Visualization through chrome browser provides better understanding of the GPU interaction

14.4900 s 14.4905 5 14.4910 “T12.4915s 4.0210's 1

-|h—-24iﬂ.? us —

QT biovevicesynchronize [} |ioMemepyDtott) g ipMemepytt.| [[f |

MU _tiopevicesynchronize [[I}] [Y] |

<barriernacket>

Il 1l
T s e s 5o | :

E—

AMD rocProf (rocProfiler)

e rocProfiler can profile GPU kernels with very low overhead (~4% for ICON)
e A wrapper script must be used for MPI applications
e Output is given as csv file

#!/bin/bash
if [$SLURM PROCID -eq 0]
then

rocprof --stats icon

else
icon

fi

Name Calls TotalDurationNs AverageNs Percentage
solve_nh$mo_solve_nonhydro_$ck_L2400_70_cceSnoloop$form.kd 43200 | 15659755246 362494 9.42361192
graupel$gscp_graupel_$ck_L781_4_cce$SnoloopS$Sform.kd 4320 12267807125 2839770 7.38243041
rbf_vec_interpol_cellSmo_intp_rbf_$ck_L304_1_cceSnoloop$form.kd 12960 | 6201460699 478507 3.73186924
solve_nh$mo_solve_nonhydro_$ck_L2497_75_cceSnoloop$form.kd 43200 | 4600033150 106482 2.76817399

E—

Cray HPE perftools-lite-gpu

e Extends the regular perftools-lite profiler by GPU analysis
e Profiling memory transfer between CPU and GPU
e Very powerful all-round tool for profiles and tracings

e High number of function and kernel calls potentially
adds noticeable overhead to total runtime

e Easy usage:

make clean

module load perftools-lite-gpu
make

1s bin

icon icon+torig

e Visualization through Cray Apprentice2 (app2)

e [CON communication pattern shows communication with
directly neighboring ranks

E—

Total Bytes
Destinatio;r PE

41618 20 22 24 2628 30 32 34 36 38 52 54
Blo

H

£4

5

%6

8 |

8 2.486e+10 4.724e+10

Helping CCE generate better code

CCE-14.0.2: 161 ps
CCE-15.0.1: 95 ps

!SACC PARALLEL

!SACC LOOP SEQ

DO j = M-1, 2, -1
I'SACC LOOP
DO i = N1, N2

A(ilj):A(ilj)+A(ilj+l)*B(ilj)

ENDDO

ENDDO

!SACC END PARALLEL

e Weak spots in CCE’s code generation were worked around in the ICON code and patched in later versions

CCE-14.0.2: 84 ps
CCE-15.0.1: 83 s

!SACC PARALLEL

!'SACC LOOP

DO i = N1, N2

!SACC LOOP SEQ
DO j = M-1, 2, -1

A(ilj):A(ilj)+A(ilj+l)*B(j’j)

ENDDO

ENDDO

!SACC END PARALLEL

e The latest compilers and libraries should be used to obtain the best performance with ICON

CCE 14.0.2

CCE 15.0.1

rocm 5.0.2

236 seconds

226 seconds

rocm 5.3.0

not available

222 seconds

Optimizing Kernels (1)

1$ACC PARALLEL DEFAULT (PRESENT) PRIVATE (a,b,c,f,g) ASYNC (1)
1$ACC LOOP SEQ
DO j = 3, M
1$ACC LOOP
DO i = N1, N2
t*p * X(i) * T(i,3) / 2(i,3)
-g * B(i,j-1) * D(i,3-1)
= -g * B(1i,j) * D(i,j+1)
=1.0dp + g * A(i,]j) * (B(i,J-1) + B(i,3))
f=1.0dp/ (b+a* Q(i,j-1))

oo oW
I

Q(i,j) = -c * £
Y(i,3) = W(i,3) - g * (E(i,3-1) - E(i,3))
Y(i,3) = (Y(i,3) - a * Y(i,3-1)) * £

ENDDO

ENDDO

!SACC END PARALLEL

Time

15.6 seconds

Optimizing Kernels (2)

1$ACC PARALLEL DEFAULT (PRESENT) PRIVATE (a,b,c,f,g) ASYNC (1)
1$ACC LOOP
DO i = N1, N2
1$ACC LOOP SEQ
DO j =3, M
t*p * X(i) * T(i,3) / 2(i,3)
-g * B(i,j-1) * D(i,3-1)
= -g * B(1i,j) * D(i,j+1)
=1.0dp + g * A(i,]j) * (B(i,J-1) + B(i,3))
f=1.0dp/ (b+a* Q(i,j-1))

oo oW
I

Q(i,j) = -c * £
Y(i,3) = W(i,3) - g * (E(i,3-1) - E(i,3))
Y(i,3) = (Y(i,3) - a * Y(i,3-1)) * £

ENDDO

ENDDO

!SACC END PARALLEL

Time

13.8 seconds

Optimizing Kernels (3)

I$ACC PARALLEL LOOP DEFAULT (PRESENT) PRIVATE (g) COLLAPSE (2) ASYNC (1)
DO j =3, M
DO i = N1, N2
g =t * p* X(i)* T(i,3)/2(i,3)
Bl1(i,j) = -g * B(i,j-1) * D(i,j-1)
Q(i,3) =g * B(i,J) * D(i,j+1)

B2(i,j) =1.0dp + g * A(i,]J) * (B(i,j-1) + B(i,3J)) Time
Y(i,j) = W(i,j) - g * (E(i,Jk-1) - E(i,]))

ENDDO Kernel 1 2.6 seconds
ENDDO Kernel 2 8.1 seconds
1$ACC PARALLEL LOOP PRIVATE (f) DEFAULT (PRESENT)

DO i = N1, N2 Total 10.6 seconds

!$ACC LOOP SEQ
DO j =3, M
£ = 1.0 _dp / (B2(i,j) + B1l(i,j) * Q(i,j-1))
Q(i,3) = Q(i,3) * £
¥(i,3) = (¥(1,3) - B1(i,3) * ¥(i,3-1)) * £
ENDDO
ENDDO

E—

ICON performance evaluation on LUMI-G

Weak scaling Strong scaling
400.0
3200
300.0 / 1600
g v =
S 200.0 S 800
3 S 400
100.0 —¢
200
0.0 100
320 1280 5120 20480 128 256 512 1024 2048
GCDs nodes

——R02B09 ——R02B10

Thank you

For follow up questions, feel free to contact me at peter.wauligmann@hpe.com

: © 2023 Hewlett Packard Enterprise Development LP

	Presentation
	Slide 1: Porting ICON to AMD GPUs: Lessons Learned
	Slide 2: Introduction
	Slide 3: ICON‘s programming models and how to port them
	Slide 4: Hipification of CUDA sections
	Slide 5: Bridging differences between the CCE and NVFORTRAN
	Slide 6: Step by step porting technique
	Slide 7: How important are asynchronous OpenACC kernels for ICON?
	Slide 8: How important is GPU based MPI communication for ICON?
	Slide 9: AMD rocProf (rocTracer)
	Slide 10: AMD rocProf (rocProfiler)
	Slide 11: Cray HPE perftools-lite-gpu
	Slide 12: Helping CCE generate better code
	Slide 13: Optimizing Kernels (1)
	Slide 14: Optimizing Kernels (2)
	Slide 15: Optimizing Kernels (3)
	Slide 16: ICON performance evaluation on LUMI-G
	Slide 17: Thank you

