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Can	we	predict	the	rupture	of	aneurysm?
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The	5D	Law:	Dinky,	Dirty,	Dynamic,	Deceptive	Data

Data + Laws of Physics

PINNs DeepONetFEM



Deep Operator Networks

• Generalized	Universal	Approximation	Theorem	for	Operator	[Chen	’95,	Lu	et	al.	’19]	
• Branch	net:	Input	{𝑢(𝑥!)}!"#$ ,	output:	 𝑏#, 𝑏%, . . , 𝑏&
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Thoracic	Aortic	Aneurysm
• Often	grows	asymptomatically	and	

clinically	silent	but	has	90%	mortality.
• Usually,	an	incidental	finding	on	

imaging.
• Non-syndromic	TAAs	account	for	95%	

of	all	TAA	cases.
• 	Rare:	with	incidence	of	4	–	10	per	100k	

people	per	year	but	yearly	death	rate	is	
6.6%.	

• Rare	but	serious:		has	killed	Albert	
Einstein,	Lucille	Ball,	George	C. Scott,	
and	John	Ritter.



TAA risk factors

• Aortic	Aneurysm	is	due	to	the	inherent	
weakness	in	aortic	wall	layers.	

• This	is	due	to	a	combination	of	genetic	
factors,	chronic	conditions	like	
atherosclerosis/	hyperlipidemia	and	
other	factors	like	smoking,	infections.	

• Inherent	weakness	+	chronic	stress	like	
in	hypertension	→ Abnormal	
enlargement	over	time.DissectionTAA



Modeling	the	aneurysmal	dilatation
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• Candidate	mechanisms	(insults)
• Reduced	elastic	fiber	integrity,	𝐶(	 													Degraded	elastin	(fragmentation,	increased	voids)
•	Compromised	mechanosensing,	𝐶$	 													Ability	of	cells	to	sense	deviations	in	stress	from												
																																																																																										homeostatic	set-point

• The	insult	profiles	are	generated	considering	the	mechanical	properties	of	the	mouse	aorta	uniform	
wall	thickness,	ℎ)	=	40	μm	and	luminal	radius,	𝑟)	=	647	μm.



Flowchart



Objective	1:	Predicting	the	contributors
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Predict	the	current	state	of	patient-specific	insult	profile	associated	with	any	
given	dilatation	and	distensibility	map



Modeling	the	aneurysmal	dilatation

• The	insult	profiles	are:	analytically		and	randomly	generated

• For	analytically	defined	insult	profile
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• Cases	considered	for	normotensive	and	33%	hypertensive	scenarios.	

• The	random	insults	are	initially	generated	as	‘latent’		Gaussian	random	fields.

Axial	width Circumferential	widthMaximum	insult

Randomly generated insults Analytically defined insults
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Framework	1:	Using	sparse	measurements

• Uses sparse measurements on dilatation and distensibility maps.
• 𝑋.!: co-ordinates of maximum dilation on dilation map
• 𝑋./: co-ordinates of minimum distensibility on distensibility map
• 𝑟#: distance(𝑋.!,𝑄) and 𝑟%: distance(𝑋.!,𝑄); 𝑄	= 0,0 .
• Place stencils (sizes: 5×5 and 9) to obtain sensor measurements.
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Framework	1:	Using	sparse	measurements

• Uses sparse measurements on dilatation and distensibility maps.
• 𝑋.!: co-ordinates of maximum dilation on dilation map
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Framework	1:	Using	sparse	measurements

Di
la
ta
tio
n	
m
ap

Di
st
en
si
bi
lit
y	
m
ap

Branch	Nets:	𝑈$, 𝑈&

Branch	Nets:	𝑈3, 𝑈4

Branch	Nets:	𝑈5(Normotensive	=	0,	Hypertensive	=	1)

Trunk	net:	y



Framework	2:	Using	full-field	images

Trunk	net:	y

𝑈$:	Dilatation	greyscale	 𝑈&:	Distensibility	greyscale

Branch	Nets:	𝑈&
(NT	=	0,	HT	=	1)• Original Resolution of the images: 41×40

• Input to the network: Reduced resolution 
                                             21×20
• Mimic real-world USG and MRI
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Study	Cases	and	Results	

• Case1	-	EFI	(NT)	–	545	
• Case2	-	MS	(NT)	–	545	
• Case3	-	EFI	or	MS	(NT)	–	500	
• Case4	-	MS	(NT	or	HT)	–	500
• Case5	-	EFI	or	MS	(NT	or	HT)	–	720	
• Case6	-	Randomly	generated	EFI	or	MS	(NT)	–	90

EFI:	Loss	of	elastic	fiber	integrity
MS:	Loss	of	mechanosensing
HT:	Hypertensive
NT:	Normotensive

The numbers denote the number of training samples
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Analytically defined insult profiles 

Point	measurements	vs	noisy	images

We	interpret	that	CNNs	are	good	de-noisers.	So,	even	with	noisy	low	resolution	of	the	
full	field	images,	CNNs	framework	is	better	that	accurate	pointwise	measurement.		
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Objective2:	Predicting	aneurysm	growth	and	outcomes

Aneurysm	progression
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Objective	2:	To	predict	growth	of	the	current	aneurysm	over	the	
next	6	months	and	12	months	,	given	previous	&	current	records.

Patient	specific	information	
	(Gender,	Marfan	Syndrome,		HT,	etc.)

Previous	records	of	
insult	profiles

Current	dilatation	and	
distensibility	map
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Key takeaways

• Accurate	prediction	of	the	insult	profile	can	be	achieved	with	the	inclusion	of	dilatation	and	
distensibility	fields.

• Predicting	insult	profiles	with	information	at	5x5	sensor	locations	is	sufficiently	accurate	for	
cases	with	𝜃!" 	< 	260°	and	relatively	small	𝑧!".	

• With	a	wider	𝜃!"	and	broader	𝑧!",	limited	information	within	a	single-spaced	neighborhood	
near	 the	 maximum	 dilatation	 and	 minimum	 distensibility	 is	 insufficient.	 Hence	 doubly-
spaced	9	sensors	are	beneficial	in	such	cases.

• The	choice	of	a	CNN	to	train	on	greyscale	images	benefits	the	model	in	terms	of	not	only	
predictive	accuracy	but	also	computational	efficiency,	as	this	framework	requires	fewer	
learnable	parameters	compared	with	the	models	employing	FNNs.
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