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Can we predict the rupture of aneurysm?
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Data + Laws of Physics

I
The 5D Law: Dinky, Dirty, Dynamic, Deceptive Data

Three scenarios of
Physics-Informed Learning Machines

Lots of Physics Some Physics No Physics
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Deep Operator Networks

Generalized Universal Approximation Theorem for Operator [Chen '95, Lu et al. "19]

Branch net: Input {u(x;)}/~,, output: [bl, by, .., bp]T € RP

Trunk net: Input y, output: [tl, ty, .., tp]T € RP p

Input u is evaluated at the fixed locations {y;}/2;  Go(W)(¥) = 7 bi(u(xy), u (x2), .., u (xp)) - t1i(y)
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Thoracic Aortic Aneurysm
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Often grows asymptomatically and
clinically silent but has 90% mortality.
Usually, an incidental finding on
imaging.

Non-syndromic TAAs account for 95%
of all TAA cases.

Rare: with incidence of 4 - 10 per 100k
people per year but yearly death rate is
6.6%.

Rare but serious: has Kkilled Albert
Einstein, Lucille Ball, George C. Scott,
and John Ritter.



TAA risk factors
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Aortic Aneurysm is due to the inherent
weakness in aortic wall layers.

This is due to a combination of genetic
factors, chronic conditions like
atherosclerosis/ hyperlipidemia and
other factors like smoking, infections.

Inherent weakness + chronic stress like
in hypertension — Abnormal
enlargement over time.



Modeling the aneurysmal dilatation

Initial geometry Insult profile Aneurysmal dilatation

Insult severity (-)

v

* Candidate mechanisms (insults)
* Reduced elastic fiber integrity, C° —» Degraded elastin (fragmentation, increased voids)

* Compromised mechanosensing, C™ Ability of cells to sense deviations in stress from
homeostatic set-point

* The insult profiles are generated considering the mechanical properties of the mouse aorta uniform
wall thickness, h, = 40 um and luminal radius, 7, = 647 pum.



Flowchart
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Objective 1: Predicting the contributors

Aneurysmal dilatation Insult profile

Insult severity (—)
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Maximal insult

Predict the current state of patient-specific insult profile associated with any
given dilatation and distensibility map



Modeling the aneurysmal dilatation

* The insult profiles are: analytically and randomly generated

VZ) oo (_

* Cases considered for normotensive and 33% hypertensive scenarios.

* For analytically defined insult profile

Zo — Zgpex 0o — eapex

(24, 6,) = 19apex exp (_

)

* The random insults are initially generated as ‘latent’ Gaussian random fields.
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Initial G&R Distension Distension
geometry evolution at diastole at systole
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Framework 1: Using sparse measurements

e Uses sparse measurements on dilatation and distensibility maps.
* Xp;: co-ordinates of maximum dilation on dilation map
* Xps: co-ordinates of minimum distensibility on distensibility map
* 1p:distance(Xp;,Q) and r,: distance(Xp;,Q); Q = (0,0).
* Place stencils (sizes: 5X5 and 9) to obtain sensor measurements.
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Framework 1: Using sparse measurements

e Uses sparse measurements on dilatation and distensibility maps.
* Xp;: co-ordinates of maximum dilation on dilation map
* Xps: co-ordinates of minimum distensibility on distensibility map
* 1p:distance(Xp;,Q) and r,: distance(Xp;,Q); Q = (0,0).
* Place stencils (sizes: 5X5 and 9) to obtain sensor measurements.
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Framework 1: Using sparse measurements

I
Branch Nets: U1, U? Trunk net: y
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Framework 2: Using full-field images

U!: Dilatation greyscale UZ: Distensibility greyscale
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Study Cases and Results

EFI: Loss of elastic fiber integrity
MS: Loss of mechanosensing

HT: Hypertensive

NT: Normotensive

* Casel - EFI (NT) - 545

* CaseZ - MS (NT) - 545

* (Case3 - EFIl or MS (NT) -500

* Case4-MS (NT or HT) =500

* Case5 - EFl or MS (NT or HT) - 720
* (Case6 - Randomly generated EFI or MS (NT) - 90
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Point measurements vs noisy images
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We interpret that CNNs are good de-noisers. So, even with noisy low resolution of the
full field images, CNNs framework is better that accurate pointwise measurement.



Objective2: Predicting aneurysm growth and outcomes

04

Aneurysm progression

Objective 2: To predict growth of the current aneurysm over the
next 6 months and 12 months, given previous & current records.
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Key takeaways

Accurate prediction of the insult profile can be achieved with the inclusion of dilatation and
distensibility fields.

Predicting insult profiles with information at 5x5 sensor locations is sufficiently accurate for
cases with 8,; < 260° and relatively small z,.

With a wider 8,4 and broader z,,4, limited information within a single-spaced neighborhood
near the maximum dilatation and minimum distensibility is insufficient. Hence doubly-
spaced 9 sensors are beneficial in such cases.

The choice of a CNN to train on greyscale images benefits the model in terms of not only
predictive accuracy but also computational efficiency, as this framework requires fewer
learnable parameters compared with the models employing FNNs.
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