Acoustic Full-Waveform Inversion in Julia on Multi-xPUs

Giacomo Aloisi, Andrea Zunino, Christian Boehm, Andreas Fichtner PASC 23, June 28th 2023

Outline

1. Introduction to Full-Waveform Inversion
2. Theory and implementation
3. Numerical experiments and benchmarks
4. Conclusions and future work

Outline

1. Introduction to Full-Waveform Inversion
2. Theory and implementation
3. Numerical experiments and benchmarks
4. Conclusions and future work

An introduction to (acoustic) Full-Waveform Inversion (FWI)

An introduction to (acoustic) Full-Waveform Inversion (FWI)

An introduction to (acoustic) Full-Waveform Inversion (FWI)

An introduction to (acoustic) Full-Waveform Inversion (FWI)

FWI applications: seismic tomography

Figure from Gerya et al., 2021: Dynamic slab segmentation due to brittle-ductile damage in the outer rise Data from Hayes et al., 2018: Slab2, a comprehensive subduction zone geometry model

FWI applications: seismic tomography

Figure from Gerya et al., 2021: Dynamic slab segmentation due to brittle-ductile damage in the outer rise Data from Tao et al., 2018: Seismic Structure of the Upper Mantle Beneath Eastern Asia From Full Waveform Seismic Tomography

FWI applications: medical ultrasound tomography

Outline

1. Introduction to Full-Waveform Inversion
2. Theory and implementation
3. Numerical experiments and benchmarks
4. Conclusions and future work

Solving the forward problem: acoustic wave equation

Acoustic wave PDE with homogeneous Dirichlet BDCs

$\Omega \subset \mathbb{R}^{n}, t \in[0, T], p=p(\boldsymbol{x}, t): \mathbb{R}^{n} \times[0, T] \rightarrow \mathbb{R}, s=s(\boldsymbol{x}, t): \mathbb{R}^{n} \times[0, T] \rightarrow \mathbb{R}, c=c(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{aligned}
\frac{1}{c(\boldsymbol{x})^{2}} \frac{\partial^{2} p(\boldsymbol{x}, t)}{\partial t^{2}} & =\nabla_{x}^{2} p(\boldsymbol{x}, t)+s(\boldsymbol{x}, t) & & \text { in } \bar{\Omega} \times[0, T] \\
p(\boldsymbol{x}, t) & =0 & & \text { in } \partial \Omega \times[0, T]
\end{aligned}
$$

Solving the forward problem: acoustic wave equation

Acoustic wave PDE with C-PML BDCs
Let $\tilde{\partial}_{i} \Omega$ be and extension of $\partial \Omega$ in the direction i.

$$
\begin{array}{ll}
\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=\nabla_{x}^{2} p+s & \text { in } \bar{\Omega} \times[0, T] \\
\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=\nabla_{x}^{2} p+\frac{\partial \psi_{i}}{\partial i}+\xi_{i} & , \text { in } \tilde{\partial}_{i} \Omega \times[0, T]
\end{array}
$$

Solving the forward problem: acoustic wave equation

2D acoustic wave discretization with central FD (2nd order in space and time)

$$
\begin{array}{rlr}
p_{x, y}^{t+1} & =2 p_{x, y}^{t}-p_{x, y}^{t-1} \\
& +c_{x, y}^{2} \Delta t^{2}\left(\frac{p_{x+1, y}^{t}-2 p_{x, y}^{t}+p_{x-1, y}^{t}}{\Delta x^{2}}\right) & \\
& +c_{x, y}^{2} \Delta t^{2}\left(\frac{p_{x, y+1}^{t}-2 p_{x, y}^{t}+p_{x, y-1}^{t}}{\Delta y^{2}}\right) & \\
& +c_{x, y}^{2} \Delta t^{2} s_{x, y}^{t} & , \forall t \in[0, T],(x, y) \in \bar{\Omega}
\end{array}
$$

Misfit functional and minimization problem

$$
\chi=\chi[p(c)]=\frac{1}{2} \sum_{r}\left(\boldsymbol{p}_{r}-\boldsymbol{p}_{r}^{\mathrm{obs}}\right) \boldsymbol{C}_{r}^{-1}\left(\boldsymbol{p}_{r}-\boldsymbol{p}_{r}^{\mathrm{obs}}\right)
$$

Misfit functional and minimization problem

$$
\begin{aligned}
& \chi=\chi[p(c)]=\frac{1}{2} \sum_{r}\left(\boldsymbol{p}_{r}-\boldsymbol{p}_{r}^{\mathrm{obs}}\right) \boldsymbol{C}_{r}^{-1}\left(\boldsymbol{p}_{r}-\boldsymbol{p}_{r}^{\mathrm{obs}}\right) \\
& \frac{\partial \chi}{\partial c_{i}}
\end{aligned}
$$

Misfit functional and minimization problem

$$
\begin{aligned}
\chi & =\chi[p(c)]=\frac{1}{2} \sum_{r}\left(\boldsymbol{p}_{r}-\boldsymbol{p}_{r}^{\mathrm{obs}}\right) \boldsymbol{C}_{r}^{-1}\left(\boldsymbol{p}_{r}-\boldsymbol{p}_{r}^{\mathrm{obs}}\right) \\
\frac{\partial \chi}{\partial c_{i}} & \approx \frac{\chi\left[p\left(c_{1}, \ldots, c_{i}+\Delta c_{i}, \ldots, c_{n}\right)\right]-\chi\left[p\left(c_{1}, \ldots, c_{i}, \ldots, c_{n}\right)\right]}{\Delta c_{i}}
\end{aligned}
$$

Misfit functional and minimization problem

$$
\begin{aligned}
\chi & =\chi[p(c)]=\frac{1}{2} \sum_{r}\left(\boldsymbol{p}_{r}-\boldsymbol{p}_{r}^{\mathrm{obs}}\right) \boldsymbol{C}_{r}^{-1}\left(\boldsymbol{p}_{r}-\boldsymbol{p}_{r}^{\mathrm{obs}}\right) \\
\frac{\partial \chi}{\partial c_{i}} & \approx \frac{\chi\left[p\left(c_{1}, \ldots, c_{i}+\Delta c_{i}, \ldots, c_{n}\right)\right]-\chi\left[p\left(c_{1}, \ldots, c_{i}, \ldots, c_{n}\right)\right]}{\Delta c_{i}}
\end{aligned}
$$

Time to compute χ on a 2000×2000 grid for 1000 time steps on 1 GPU ≈ 0.4 seconds

Misfit functional and minimization problem

$$
\begin{aligned}
\chi & =\chi[p(c)]=\frac{1}{2} \sum_{r}\left(\boldsymbol{p}_{r}-\boldsymbol{p}_{r}^{\mathrm{obs}}\right) \boldsymbol{C}_{r}^{-1}\left(\boldsymbol{p}_{r}-\boldsymbol{p}_{r}^{\mathrm{obs}}\right) \\
\frac{\partial \chi}{\partial c_{i}} & \approx \frac{\chi\left[p\left(c_{1}, \ldots, c_{i}+\Delta c_{i}, \ldots, c_{n}\right)\right]-\chi\left[p\left(c_{1}, \ldots, c_{i}, \ldots, c_{n}\right)\right]}{\Delta c_{i}}
\end{aligned}
$$

Time to compute χ on a 2000×2000 grid for 1000 time steps on 1 GPU ≈ 0.4 seconds Time to compute gradient $\rightarrow 16 * 10^{5}$ seconds ≈ 444 hours! NOT feasible!

Efficiently computing model parameters gradients: adjoint equation

$$
G(p, c):=\nabla_{x}^{2} p+s-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0
$$

Efficiently computing model parameters gradients: adjoint equation

$$
\begin{aligned}
G(p, c) & :=\nabla_{x}^{2} p+s-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0 \\
\mathcal{L} & :=\chi+\int_{\Omega} \int_{0}^{T} \lambda G(p, c) d t d x
\end{aligned}
$$

Efficiently computing model parameters gradients: adjoint equation

$$
\begin{aligned}
G(p, c) & :=\nabla_{x}^{2} p+s-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0 \\
\mathcal{L} & :=\chi+\int_{\Omega} \int_{0}^{T} \lambda G(p, c) d t d x \\
\frac{\partial \mathcal{L}}{\partial p} & =0
\end{aligned}
$$

Efficiently computing model parameters gradients: adjoint equation

$$
\begin{aligned}
G(p, c) & :=\nabla_{x}^{2} p+s-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0 \\
\mathcal{L} & :=\chi+\int_{\Omega} \int_{0}^{T} \lambda G(p, c) d t d x \\
\frac{\partial \mathcal{L}}{\partial p} & =0 \stackrel{\text { i.b.p. }}{\Longrightarrow}
\end{aligned}
$$

Efficiently computing model parameters gradients: adjoint equation

$$
\begin{aligned}
G(p, c) & :=\nabla_{x}^{2} p+s-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0 \\
\mathcal{L} & :=\chi+\int_{\Omega} \int_{0}^{T} \lambda G(p, c) d t d x \\
\frac{\partial \mathcal{L}}{\partial p} & =0 \stackrel{i . b . p .}{\Longrightarrow} \frac{1}{c^{2}} \frac{\partial^{2} \lambda}{\partial t^{2}}=\nabla_{x}^{2} \lambda+\tilde{s}
\end{aligned}
$$

Efficiently computing model parameters gradients: adjoint equation

$$
\begin{array}{rlr}
G(p, c) & :=\nabla_{x}^{2} p+s-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0 \\
\mathcal{L} & :=\chi+\int_{\Omega} \int_{0}^{T} \lambda G(p, c) d t d x & \\
\frac{\partial \mathcal{L}}{\partial p} & =0 \stackrel{\text { i.b.p. }}{\Longrightarrow} \frac{1}{c^{2}} \frac{\partial^{2} \lambda}{\partial t^{2}}=\nabla_{x}^{2} \lambda+\tilde{s} & \text { in } \Omega \times[T, 0]
\end{array}
$$

Efficiently computing model parameters gradients: adjoint equation

$$
\begin{aligned}
G(p, c) & :=\nabla_{x}^{2} p+s-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0 & & \\
\mathcal{L} & :=\chi+\int_{\Omega} \int_{0}^{T} \lambda G(p, c) d t d x & & \\
\frac{\partial \mathcal{L}}{\partial p} & =0 \stackrel{i . b . p .}{\Longrightarrow} \frac{1}{c^{2}} \frac{\partial^{2} \lambda}{\partial t^{2}}=\nabla_{x}^{2} \lambda+\tilde{s} & & , \text { in } \Omega \times[T, 0] \\
\tilde{s}_{r} & =\frac{\partial \chi}{\partial p}=\boldsymbol{C}_{r}^{-1}\left(\boldsymbol{p}_{r}-\boldsymbol{p}_{r}^{\mathrm{obs}}\right) & & , \forall r
\end{aligned}
$$

Efficiently computing model parameters gradients: adjoint equation

$$
\begin{aligned}
G(p, c) & :=\nabla_{r}^{2} p+s-\frac{1}{\sigma} \frac{\partial^{2} p}{\partial, n}=0 \\
\mathcal{L} & \frac{\partial \mathcal{L}}{} \stackrel{G \stackrel{!}{=} 0}{\partial c_{i}} \stackrel{\partial \chi}{=} \frac{\partial \chi}{\partial c_{i}}=\frac{2}{c_{i}^{3}} \int_{0}^{T} \lambda \frac{\partial^{2} p}{\partial t^{2}} d t \quad \times[T, 0] \\
\tilde{\boldsymbol{s}}_{r} & =\frac{\partial \chi}{\partial p}=\boldsymbol{C}_{r}^{-1}\left(\boldsymbol{p}_{r}-\boldsymbol{p}_{r}^{\mathrm{obs}}\right) \quad, \forall r
\end{aligned}
$$

Efficiently computing model parameters gradients: adjoint equation

$$
\begin{array}{rlr}
G(p, c) & :=\nabla_{r}^{2} p+s-\frac{1}{\sigma} \frac{\partial^{2} p}{n \cdot \rho}=0 & \text { Time to gradient } \approx 1.8 \text { seconds! } \\
\mathcal{L} \\
\frac{\partial \mathcal{L}}{\partial p} & \frac{\partial \mathcal{L}}{\partial c_{i}} \stackrel{G \stackrel{!}{=} 0}{=} \frac{\partial \chi}{\partial c_{i}}=\frac{2}{c_{i}^{3}} \int_{0}^{T} \lambda \frac{\partial^{2} p}{\partial t^{2}} d t \quad \times[T, 0] \\
\tilde{\boldsymbol{s}}_{r} & =\frac{\partial \chi}{\partial p}=\boldsymbol{C}_{r}^{-1}\left(\boldsymbol{p}_{r}-\boldsymbol{p}_{r}^{\text {obs }}\right) \quad, \forall r
\end{array}
$$

Acoustic FWI recipe

1. Choose initial model $c=c_{0}$

Acoustic FWI recipe

1. Choose initial model $c=c_{0}$
2. Solve acoustic wave equation to get pressure field p

Acoustic FWI recipe

1. Choose initial model $c=c_{0}$
2. Solve acoustic wave equation to get pressure field p
3. Compute $\chi(p)$ and adjoint source \tilde{s}

Acoustic FWI recipe

1. Choose initial model $c=c_{0}$
2. Solve acoustic wave equation to get pressure field p
3. Compute $\chi(p)$ and adjoint source \tilde{s}
4. Solve adjoint equation to get adjoint field λ

Acoustic FWI recipe

1. Choose initial model $c=c_{0}$
2. Solve acoustic wave equation to get pressure field p
3. Compute $\chi(p)$ and adjoint source \tilde{s}
4. Solve adjoint equation to get adjoint field λ
5. Compute $\nabla_{c} \chi$ while solving adjoint equation

Acoustic FWI recipe

1. Choose initial model $c=c_{0}$
2. Solve acoustic wave equation to get pressure field p
3. Compute $\chi(p)$ and adjoint source \tilde{s}
4. Solve adjoint equation to get adjoint field λ
5. Compute $\nabla_{c} \chi$ while solving adjoint equation
6. Update model c using $\chi(p)$ and $\nabla_{c} \chi$ with an optimization algorithm (GD, L-BFGS, etc...) and go back to step 2. until convergence

HMCLab.jl and SeismicWaves.jl

HMCLab.jl and SeismicWaves.jl

HMCLab.jl and SeismicWaves.jl

HMCLab.jl and SeismicWaves.jl

HMCLab.jl and SeismicWaves.jl

and more...

HMCLab.jl and SeismicWaves.jl

and more...

Code: single xPU 2D kernel w/ ParallelStencil.jl

```
@parallel_indices (i, j) function update_p(
    pold, pcur, pnew, halo, c, dt, dx, dy
    # pressure derivatives in space
    d2p_dx2 = (pcur[i+1, j] - 2.0 * pcur[i, j] + pour[i-1, j]) / (dx
    d2p_dy2 = (pcur[i, j+1] - 2.0 * pcur[i, j] + pcur[i, j-1]) / (dy
    # update pressure
    pnew[i,j]=2.0 * pcur[i, j] - pold[i, j] +c[i, j] 2 * dt 2 * (d2p_dx2 + d2p_dy2)
    return nothing
```

```
    it = 1:nt
    # update pressure
    @parallel (2: (nx
    # inject sources
    @parallel (1:nsrcs)
    # record receivers
    @parallel (1:nrecs)
    # swap pointers
    pold, pcur, pnew = pcur, pnew, pold
end
```

Code: multi-xPU 2D kernel
w/ ParallelStencil.jl + ImplicitGlobalGrid.jl

```
for it = 1:nt
    @hide_communication b_width begin
    # update pressure
    @parallel (2:(nx-1), 2:(ny-1)) update_p(pold, pcur, pnew, halo, c, dt, dx, dy)
    # inject sources
    @parallel (1:nsrcs
    # record receivers
    @parallel (1:nrecs) record_receivers(pnew, traces, posrecs, it)
    # exchange new pressure with other nodes
    update_halo(pnew)
    end
    # swap pointers
    pold, pcur, pnew = pcur, pnew, pold
```


Outline

1. Introduction to Full-Waveform Inversion
2. Theory and implementation
3. Numerical experiments and benchmarks
4. Conclusions and future work

Numerical experiments: Shepp-Logan phantom inversion

Inversion setup
Sources: 16
Receivers: 32
Ricker wavelet at various
frequencies
Model size: 701x701
C-PML layers: 20
Timesteps forward: 12000
Optim algo: L-BFGS

Numerical experiments: Shepp-Logan phantom inversion

Numerical experiments: Shepp-Logan phantom inversion

Numerical experiments: Shepp-Logan phantom inversion

Numerical experiments: Overthrust model inversion (with correlated source noise)

Inversion setup
Sources: 10
Receivers: 30
Ricker wavelet at 12 Hz
Model size: 896x594
C-PML layers: 20
Free surface BDC at top
Timesteps forward: 2500
Optim algo: L-BFGS

Numerical experiments: Overthrust model inversion (with correlated source noise)

Numerical experiments: Overthrust model inversion (with correlated source noise)

Numerical experiments: Overthrust model inversion in 3D

Benchmarks: Performance metrics

- FLOP/s-like metrics NOT adequate!
- computation is memory bounded

Benchmarks: Performance metrics

- FLOP/s-like metrics NOT adequate!
- computation is memory bounded
- Effective memory access $A_{\text {eff }}$ [byte]
- strictly needed memory loads + stores

Benchmarks: Performance metrics

- FLOP/s-like metrics NOT adequate!
- computation is memory bounded
- Effective memory access $A_{\text {eff }}$ [byte]
- strictly needed memory loads + stores
- example: acoustic 1D pressure update with $n=10^{7}$ grid points (FP 64)

Benchmarks: Performance metrics

- FLOP/s-like metrics NOT adequate!
- computation is memory bounded
- Effective memory access $A_{\text {eff }}$ [byte]
- strictly needed memory loads + stores
- example: acoustic 1D pressure update with $n=10^{7}$ grid points (FP 64)
- $A_{\text {eff }}=(n+3 n) * 8=320 \mathrm{MB}$

Benchmarks: Performance metrics

- FLOP/s-like metrics NOT adequate!
- computation is memory bounded
- Effective memory access $A_{\text {eff }}$ [byte]
- strictly needed memory loads + stores
- example: acoustic 1D pressure update with $n=10^{7}$ grid points (FP 64)
- $A_{\text {eff }}=(n+3 n) * 8=320 \mathrm{MB}$
- Effective memory throughput: $T_{\text {eff }}=A_{\text {eff }} / t[\mathrm{byte} / \mathrm{sec}]$

Benchmarks: Performance metrics

- FLOP/s-like metrics NOT adequate!
- computation is memory bounded
- Effective memory access $A_{\text {eff }}$ [byte]
- strictly needed memory loads + stores
- example: acoustic 1D pressure update with $n=10^{7}$ grid points (FP 64)
- $A_{\text {eff }}=(n+3 n) * 8=320 \mathrm{MB}$
- Effective memory throughput: $T_{\text {eff }}=A_{\text {eff }} / t[\mathrm{byte} / \mathrm{sec}]$
- same example as before, suppose $t=10^{-3} \mathrm{~s}$

Benchmarks: Performance metrics

- FLOP/s-like metrics NOT adequate!
- computation is memory bounded
- Effective memory access $A_{\text {eff }}$ [byte]
- strictly needed memory loads + stores
- example: acoustic 1D pressure update with $n=10^{7}$ grid points (FP 64)
- $A_{\text {eff }}=(n+3 n) * 8=320 \mathrm{MB}$
- Effective memory throughput: $T_{\text {eff }}=A_{\text {eff }} / t$ [byte/sec]
- same example as before, suppose $t=10^{-3} \mathrm{~s}$
- $T_{\text {eff }}=A_{\text {eff }} / t=320 \mathrm{~GB} / \mathrm{s}$

Benchmarks: kernels performance

Benchmarking setup
GPUs Nvidia GTX 4070 \& A100
julia version 1.8.5
flags: -O3 -check-bounds=no CUDA version:
12.1 (for GTX 4070)
11.4 (for A100)

Peak performances measured with GPU-STREAM 20 C-PML layers in each boundary

Repeated measurements until $+-5 \%$ of median execution time is within the 99\%
non-parametric Cl

Effective memory throughput (kernels)

Benchmarks: kernels performance

Benchmarking setup
GPUs Nvidia GTX 4070 \& A100
julia version 1.8.5
flags: -O3 -check-bounds=no CUDA version:
12.1 (for GTX 4070)
11.4 (for A100)

Peak performances measured with GPU-STREAM 20 C-PML layers in each boundary

Repeated measurements until $+-5 \%$ of median execution time is within the 99\%
non-parametric Cl

Percentage of peak memory bandwidth (kernels)

Benchmarks: forward solver execution times

Benchmarking setup
GPU Nvidia GTX 4070
julia version 1.8.5
flags: -O3 -check-bounds=no CUDA version: 12.1
Peak performances measured with GPU-STREAM 20 C-PML layers in each boundary

Repeated measurements until $+5 \%$ of median execution time is within the 99%
non-parametric Cl

Percentage of solver time spent in kernel vs. overhead (GTX 4070)

Benchmarks: (preliminary) multi-GPU weak scaling

Benchmarking setup GPUs Tesla P100 (on Piz Daint)
julia version 1.7.1
flags: -O3 -check-bounds=no
Peak performances measured with GPU-STREAM
20 C-PML layers in each boundary

Measured average time per iteration by running multiple iterations (skip first 200 iterations for 2D, skip first 19 iterations for 3D)

Peak memory bandwidth percentage of acoustic 2D/3D CPML on multiple GPUs

Outline

1. Introduction to Full-Waveform Inversion
2. Theory and implementation
3. Numerical experiments and benchmarks
4. Conclusions and future work

Conclusions

- What we have done:

Conclusions

- What we have done:
- Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...

Conclusions

- What we have done:
- Efficient (and scalable) FD acoustic wave equation forward and adjoint solver... - multi-platform and portable...

Conclusions

- What we have done:
- Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
- multi-platform and portable...
- using a high level language like Julia...

Conclusions

- What we have done:
- Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
- multi-platform and portable...
- using a high level language like Julia...
- with minimal HPC knowledge...

Conclusions

- What we have done:
- Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
- multi-platform and portable...
- using a high level language like Julia...
- with minimal HPC knowledge...
- open source! (soon ${ }^{\text {TM }}$)

Conclusions

- What we have done:
- Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
- multi-platform and portable...
- using a high level language like Julia...
- with minimal HPC knowledge...
- open source! (soon ${ }^{\text {TM }}$)
- Still WIP:

Conclusions

- What we have done:
- Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
- multi-platform and portable...
- using a high level language like Julia...
- with minimal HPC knowledge...
- open source! (soon ${ }^{\text {TM }}$)
- Still WIP:
- Elastic solvers

Conclusions

- What we have done:
- Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
- multi-platform and portable...
- using a high level language like Julia...
- with minimal HPC knowledge...
- open source! (soon ${ }^{\text {TM }}$)
- Still WIP:
- Elastic solvers
- Higher order FD stencils

Conclusions

- What we have done:
- Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
- multi-platform and portable...
- using a high level language like Julia...
- with minimal HPC knowledge...
- open source! (soon ${ }^{\text {TM }}$)
- Still WIP:
- Elastic solvers
- Higher order FD stencils
- Fully fledged multi-xPU implementations

芘マヨ

$\underset{\text { Switzerland }}{\text { Dat }}$ 26－28 June 2023

ETHzürich

Thanks for your attention！

Giacomo Aloisi ［galoisi＠student．ethz．ch］

HMCLab

Efficiently computing model parameters gradients: checkpointing

Efficiently computing model parameters gradients: checkpointing

Efficiently computing model parameters gradients: checkpointing

Efficiently computing model parameters gradients: checkpointing

adjoint solver

Efficiently computing model parameters gradients: checkpointing

time

Efficiently computing model parameters gradients: checkpointing

Efficiently computing model parameters gradients: checkpointing

Efficiently computing model parameters gradients: checkpointing

time

Efficiently computing model parameters gradients: checkpointing

