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FWI applications: seismic tomography
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Figure from Gerya et al., 2021: Dynamic slab segmentation due to brittle—ductile damage in the outer rise
Data from Hayes et al., 2018: Slab2, a comprehensive subduction zone geometry model
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FWI applications: seismic tomography
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Figure from Gerya et al., 2021: Dynamic slab segmentation due to brittle—ductile damage in the outer rise
Data from Tao et al., 2018: Seismic Structure of the Upper Mantle Beneath Eastern Asia From Full Waveform Seismic Tomography
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FWI applications: medical ultrasound tomography
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Figure from Marty et al., 2022: Elastic Full-Waveform Inversion for Transcranial Ultrasound Computed Tomography using Optimal Transport
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2. Theory and implementation



Solving the forward problem: acoustic wave equation

Acoustic wave PDE with homogeneous Dirichlet BDCs
QCR"te0,T],p=p(xz,t):R" x[0,T] = R,s =s(x,t) : R" X [0,7] - R,c=c(x) :R" - R

1 0*p(x,t)
c(x)? Ot
p(z,t) =0 , In 9Q x [0, T]

= V2 p(x,t) + s(x,t) , in Q x [0,7],
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Solving the forward problem: acoustic wave equation

Acoustic wave PDE with C-PML BDCs

Let 9;92 be and extension of 92 in the direction i.

1 9% S
gﬁzvipjug , iInQ x [0,7],
132]9 O i 9
E@ZVEJH' 5 +¢& , In 0;Q2 x [0, T
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Solving the forward problem: acoustic wave equation

2D acoustic wave discretization with central FD (2nd order in space and time)

(+1 _ ot 11
Doy = sz,y Py

t t t
+ Cz‘,yAtQ (p:t—i-l,y _ 2px,y + pil'_l,y)

Az?

¢ ¢ ¢
= ci yAt2 (px,erl — QApx,Qy + px,y—1>
’ Yy

+ Ci’yAtZSi’y 7Vt € [Oa T]? (.’E, y) € ﬁ
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Misfit functional and minimization problem
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Misfit functional and minimization problem

X =X[p(c)] = 5 >_(p, = P*) C;* (py = PJ™)
ox X[p(er, .o ci+ Aciy .. en)] — X[p(er, ..oy ciy ey cn)]
062- - ACZ‘

Time to compute X on a 2000x2000 grid for 1000 time steps on 1 GPU = 0.4 seconds
Time to compute gradient — 16 = 10° seconds ~ 444 hours! NOT feasible!
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Efficiently computing model parameters gradients: adjoint equation
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Efficiently computing model parameters gradients: adjoint equation

2
Gpe) = V2 pts— 2P

O L0

=0
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Efficiently computing model parameters gradients: adjoint equation

32]) Time to gradient ~ 1.8 seconds!

1
G(p,c) =Vip+s—— =0

O L0
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p
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Acoustic FWI recipe

o oA~ 0N~

Choose initial model ¢ = ¢

Solve acoustic wave equation to get pressure field p
Compute X(p) and adjoint source §

Solve adjoint equation to get adjoint field A
Compute V. X while solving adjoint equation

Update model c using X(p) and V. X with an optimization algorithm (GD, L-BFGS, etc...) and go

back to step 2. until convergence

7118



HMCLab.jl and SeismicWaves. jl

o
o

HMCLab

https://hmclab.science, https:/ptsolvers.github.io/ GPU4GEO
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Code: single xPU 2D kernel w/ ParallelStencil.jl

dparallel_.

pcur, pnew

Omlin S. (CSCS), Réass L. (ETH) [https:/github.com/omlins/ParallelStencil.l] 918


https://github.com/omlins/ParallelStencil.jl

Code: multi-xPU 2D kernel
w/ ParallelStencil.jl + ImplicitGlobalGrid. jl

Omlin S. (CSCS), Réss L. (ETH) [https://github.com/eth-cscs/ImplicitGlobalGrid.jl]
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3. Numerical experiments and benchmarks



Numerical experiments: Shepp-Logan phantom inversion

True model

2100

2000

Inversion setup

Sources: 16 1900
Receivers: 32 _
Ricker wavelet at various = £
; € 1800 £
frequencies = s
Model size: 701x701 N 5
C-PML layers: 20
Timesteps forward: 12000 1700
Optim algo: L-BFGS
1600
1500

Shepp L., Logan B., 1974: The Fourier Reconstruction of a Head Section 11718



Numerical experiments: Shepp-Logan phantom inversion
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Numerical experiments: Shepp-Logan phantom inversion
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Numerical experiments: Overthrust model inversion (with correlated source

noise)

True model

3000
Inversion setup

Sources: 10
Receivers: 30 ~
Ricker wavelet at 12Hz

Model size: 896x594
C-PML layers: 20

Free surface BDC at top
Timesteps forward: 2500
Optim algo: L-BFGS

2750 @

vp [m,

2500

2250

1200
x[m]

SEG/EAGE Salt and Overthrust Models [https://wiki.seg.org/wiki/SEG/EAGE_Salt_and_Overthrust_Models]
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Numerical experiments: Overthrust model inversion (with correlated source
noise)
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Numerical experiments: Overthrust model inversion in 3D
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» FLOP/s-like metrics NOT adequate!
— computation is memory bounded
» Effective memory access At [byte]

— strictly needed memory loads + stores
— example: acoustic 1D pressure update with n = 107 grid points (FP 64)

» A = (n+3n)x8 =320 MB
» Effective memory throughput: Te = Aert/t [byte/sec]

— same example as before, suppose t = 1073 s
> To = Aer/t = 320 GB/s
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Benchmarks:

Benchmarking setup

GPUs Nvidia GTX 4070 &
A100

julia version 1.8.5

flags: -O3 —check-bounds=no
CUDA version:

12.1 (for GTX 4070)

11.4 (for A100)

Peak performances measured
with GPU-STREAM

20 C-PML layers in each
boundary

Repeated measurements until
+-5% of median execution time
is within the 99%
non-parametric Cl

kernels performance

Teff [GB/s]

1400

1200

1000

800

Effective memory throughput (kernels)

2D kernel

3D kernel

A100 (1389 [GB/s])

GTX 4070 (484 [GB/s])

1025
m

2049 4097 8193 16385
odel size (nx = ny)

129 257 321 401
model size (nx = ny = nz)

501

15/18




Benchmarks: kernels performance

Benchmarking setup
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A100

julia version 1.8.5
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CUDA version:
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11.4 (for A100)
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with GPU-STREAM

20 C-PML layers in each
boundary

Repeated measurements until
+-5% of median execution time
is within the 99%
non-parametric Cl
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2D kernel
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model size (nx = ny = nz)
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Benchmarks: forward solver execution times

Benchmarking setup
GPU Nvidia GTX 4070
julia version 1.8.5

flags: -O3 —check-bounds=no
CUDA version: 12.1 100 2D kernel 3D kernel

Percentage of solver time spent in kernel vs. overhead (GTX 4070)

.12 }
Peak performances measured [ [ 03025 [ 106 I OHZ=N i0i209:1 [y [0E275] iy I
with GPU-STREAM %
20 C-PML layers in each

— 80
boundary 9

© 70

£

=]

a-) 60

>

3 so 55.7ms| [99.9ms| | 0.39s | | 1.31s | | 4.92s | | 19.4s 0.131s | |0.464s| | 2.27s 3.95 7.25 12.9s
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& 40

8

c

@ 30

o

I

o 20

10 | WM overhead
. 3 kemel

Repeated measurements until . eme
+-5% of median execution time 513 1025 2049 4097 8193 16385 65 129 257 321 401 501
is within the 99% model size (nx = ny), nt = 1000 model size (nx = ny = nz), nt = 1000

non-parametric Cl
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Benchmarks:

Benchmarking setup

GPUs Tesla P100 (on Piz
Daint)

julia version 1.7.1

flags: -O3 —check-bounds=no
Peak performances measured
with GPU-STREAM

20 C-PML layers in each
boundary

Measured average time per
iteration by running multiple
iterations (skip first 200
iterations for 2D, skip first 19
iterations for 3D)

(preliminary) multi-GPU weak scaling

Percentage of peak [%]

100

Peak memory bandwidth percentage of acoustic 2D/3D CPML
on multiple GPUs

~88%
a ~83%

~60%

.\JD multi-GPU

~50%

25 27 3

6 64
number of nodes/GPUs
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4. Conclusions and future work



Conclusions

¢ \What we have done:

18/18



Conclusions

® What we have done:
— Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...

18/18



Conclusions

¢ \What we have done:

— Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
— multi-platform and portable...

18/18



Conclusions

¢ \What we have done:

— Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
— multi-platform and portable...
— using a high level language like Julia...

18/18



Conclusions

¢ \What we have done:

Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
multi-platform and portable...

using a high level language like Julia...

with minimal HPC knowledge...

18/18



Conclusions

¢ \What we have done:

Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
multi-platform and portable...

using a high level language like Julia...

with minimal HPC knowledge...

open source! (soon™)

18/18



Conclusions

¢ \What we have done:

Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
multi-platform and portable...

using a high level language like Julia...

with minimal HPC knowledge...

open source! (soon™)

o Still WIP:

18/18



Conclusions

¢ \What we have done:

Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
multi-platform and portable...

using a high level language like Julia...

with minimal HPC knowledge...

open source! (soon™)

e Still WIP:
— Elastic solvers

18/18



Conclusions

¢ \What we have done:

Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
multi-platform and portable...

using a high level language like Julia...

with minimal HPC knowledge...

open source! (soon™)

o Still WIP:

— Elastic solvers
— Higher order FD stencils

18/18



Conclusions

¢ \What we have done:

Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
multi-platform and portable...

using a high level language like Julia...

with minimal HPC knowledge...

open source! (soon™)

o Still WIP:

— Elastic solvers
— Higher order FD stencils
— Fully fledged multi-xPU implementations
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Efficiently computing model parameters gradients: checkpointing
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