23 ETHziirich —SwR=

l 26-28 June 2023

..........

Acoustic Full-Waveform Inversion in Julia on
Multi-xPUs

Giacomo Aloisi, Andrea Zunino, Christian Boehm, Andreas Fichtner
PASC 23, June 28th 2023

Outline

1. Introduction to Full-Waveform Inversion

2. Theory and implementation

3. Numerical experiments and benchmarks

4. Conclusions and future work

Outline

1. Introduction to Full-Waveform Inversion

An introduction to (acoustic) Full-Waveform Inversion (FWI)

c(z,y, 2)

1/18

An introduction to (acoustic) Full-Waveform Inversion (FWI)

c(z,y, 2)

1/18

An introduction to (acoustic) Full-Waveform Inversion (FWI)

1/18

An introduction to (acoustic) Full-Waveform

pressure

1—

05—

-05—

Inversion (FWI)

time

1/18

FWI applications: seismic tomography

110° 120° 130° 140° 150° 160°

50°

0 200 400

Al

600

45°

Cl s

30°

257

Figure from Gerya et al., 2021: Dynamic slab segmentation due to brittle—ductile damage in the outer rise
Data from Hayes et al., 2018: Slab2, a comprehensive subduction zone geometry model

2/18

FWI applications: seismic tomography

50 00 250 x[kmlopsp g

o — LWL
6 -4 -2 0 2 4 6

Figure from Gerya et al., 2021: Dynamic slab segmentation due to brittle—ductile damage in the outer rise
Data from Tao et al., 2018: Seismic Structure of the Upper Mantle Beneath Eastern Asia From Full Waveform Seismic Tomography

2/18

FWI applications: medical ultrasound tomography

vp[m/s]
2800

2500
1750
1650
1550

Figure from Marty et al., 2022: Elastic Full-Waveform Inversion for Transcranial Ultrasound Computed Tomography using Optimal Transport

initial model reconstruction target model

3/18

Outline

2. Theory and implementation

Solving the forward problem: acoustic wave equation

Acoustic wave PDE with homogeneous Dirichlet BDCs
QCR"te0,T],p=p(xz,t):R" x[0,T] = R,s =s(x,t) : R" X [0,7] - R,c=c(x) :R" - R

1 0*p(x,t)
c(x)? Ot
p(z,t) =0 , In 9Q x [0, T]

= V2 p(x,t) + s(x,t) , in Q x [0,7],

4/18

Solving the forward problem: acoustic wave equation

Acoustic wave PDE with C-PML BDCs

Let 9;92 be and extension of 92 in the direction i.

1 9% S
gﬁzvipjug , iInQ x [0,7],
132]9 O i 9
E@ZVEJH' 5 +¢& , In 0;Q2 x [0, T

4/18

Solving the forward problem: acoustic wave equation

2D acoustic wave discretization with central FD (2nd order in space and time)

(+1 _ ot 11
Doy = sz,y Py

t t t
+ Cz‘,yAtQ (p:t—i-l,y _ 2px,y + pil'_l,y)

Az?

¢ ¢ ¢
= ci yAt2 (px,erl — QApx,Qy + px,y—1>
’ Yy

+ Ci’yAtZSi’y 7Vt € [Oa T]? (.’E, y) € ﬁ

4/18

Misfit functional and minimization problem

5/18

Misfit functional and minimization problem

5/18

Misfit functional and minimization problem

1

X =X[p(e)] = 5 > o(pr —p™) C; (p, — PI)

r

OX _X[p(er,...,ci+Aci, ... cn)] = X[p(er, .. ¢y 6]
8CZ’ - ACZ‘

5/18

Misfit functional and minimization problem

1
X =X[p(c)] = 5 >_(p, = P*) C;* (py = PJ™)
OX _X[p(er,...,ci+Aci, ... cn)] = X[p(er, .. ¢y 6]
8CZ’ - ACZ‘

Time to compute X on a 2000x2000 grid for 1000 time steps on 1 GPU = 0.4 seconds

5/18

Misfit functional and minimization problem

X =X[p(c)] = 5 >_(p, = P*) C;* (py = PJ™)
ox X[p(er, .o ci+ Aciy .. en)] — X[p(er, ..oy ciy ey cn)]
062- - ACZ‘

Time to compute X on a 2000x2000 grid for 1000 time steps on 1 GPU = 0.4 seconds
Time to compute gradient — 16 = 10° seconds ~ 444 hours! NOT feasible!

5/18

Efficiently computing model parameters gradients: adjoint equation

6/18

Efficiently computing model parameters gradients: adjoint equation

1 0%
G(p,c) = Vip—i—s—C—Q@:O

£::X+/Q/OT>\G(p,c) dt dx

6/18

Efficiently computing model parameters gradients: adjoint equation

1 0%
G(p,c)::Vip—i-s—g@:O
T
£::X+/Q/O AG(p,c) dt dx

oL

3 ~ O

6/18

Efficiently computing model parameters gradients: adjoint equation

1 0%
G(p,c)::Vip—i-s—g@:O
T
£::X+// AG(p,c) dt dx
QJo
aﬁ_oi.b.p‘

-

6/18

Efficiently computing model parameters gradients: adjoint equation

1 0%
G(p,C):Vip‘i‘S—g@:O
T
£::X+// AG(p,c) dt dx
QJo
oL ibp. | 1 0%\ 5 3
I - = A
o~V e T VTS

6/18

Efficiently computing model parameters gradients: adjoint equation

1 0%
G(p,C):Vip‘i‘S—g@:O
T
£::X+// AG(p,c) dt dx
QJo
oL ibp. | 1 0%\ 5 3
I - = A
o~V e T VTS

, inQ x [T,0]

6/18

Efficiently computing model parameters gradients: adjoint equation

1 0%
G(p,c) = Vip—i—s—g@:()

£::X+/Q/OT>\G(p,c) dt dx

0L ibp | LNy
o0 |Zoe Vet
5= O (-)

, inQ x [T, 0]

,Vr

6/18

Efficiently computing model parameters gradients: adjoint equation

2
Gpe) = V2 pts— 2P

O L0

=0

L L
oL P ox 2 /T I
L 0a 0a o Tor
p
gr = o = Cr_l (pr - pgbs) ,VT'

= =

x [T, 0]

6/18

Efficiently computing model parameters gradients: adjoint equation

32]) Time to gradient ~ 1.8 seconds!

1
G(p,c) =Vip+s—— =0

O L0

L L
oL P ox 2 /T I
?f Oc; Oc; ¢ Jo " Ot « [T, 0]
p
gr = " = C_l (pr - pgbs) ,VT'

% .

6/18

Acoustic FWI recipe

1. Choose initial model ¢ = ¢q

7118

Acoustic FWI recipe

1. Choose initial model ¢ = ¢p
2. Solve acoustic wave equation to get pressure field p

7/18

Acoustic FWI recipe

1. Choose initial model ¢ = ¢y
2. Solve acoustic wave equation to get pressure field p
3. Compute X(p) and adjoint source §

7118

Acoustic FWI recipe

P LN~

Choose initial model ¢ = ¢

Solve acoustic wave equation to get pressure field p
Compute X(p) and adjoint source §

Solve adjoint equation to get adjoint field A

7118

Acoustic FWI recipe

o > 0 b=

Choose initial model ¢ = ¢

Solve acoustic wave equation to get pressure field p
Compute X(p) and adjoint source §

Solve adjoint equation to get adjoint field A
Compute V. X while solving adjoint equation

7118

Acoustic FWI recipe

o oA~ 0N~

Choose initial model ¢ = ¢

Solve acoustic wave equation to get pressure field p
Compute X(p) and adjoint source §

Solve adjoint equation to get adjoint field A
Compute V. X while solving adjoint equation

Update model c using X(p) and V. X with an optimization algorithm (GD, L-BFGS, etc...) and go

back to step 2. until convergence

7118

HMCLab.jl and SeismicWaves. jl

o
o

HMCLab

https://hmclab.science, https:/ptsolvers.github.io/ GPU4GEO
8/18

https://hmclab.science
https://ptsolvers.github.io/GPU4GEO

HMCLab.jl and SeismicWaves. jl

o

/ EikonalSolvers.jl
O

HMCLab

https://hmclab.science, https:/ptsolvers.github.io/ GPU4GEO
8/18

https://hmclab.science
https://ptsolvers.github.io/GPU4GEO

HMCLab.jl and SeismicWaves. jl

o

/ EikonalSolvers.jl
0]
HMClLab |
MCsamplers. jl

https://hmclab.science, https:/ptsolvers.github.io/ GPU4GEO
8/18

https://hmclab.science
https://ptsolvers.github.io/GPU4GEO

HMCLab.jl and SeismicWaves. jl

/ EikonalSolvers.jl
@)

(o) - SesmicWaves. jl

HMCLab \ MCsamplers.jl

https://hmclab.science, https:/ptsolvers.github.io/ GPU4GEO
8/18

https://hmclab.science
https://ptsolvers.github.io/GPU4GEO

HMCLab.jl and SeismicWaves. jl

/ EikonalSolvers.jl
@)

(o) - SesmicWaves. jl

HMCLab \ MCsamplers.jl

and more...

https://hmclab.science, https:/ptsolvers.github.io/ GPU4GEO
8/18

https://hmclab.science
https://ptsolvers.github.io/GPU4GEO

HMCLab.jl and SeismicWaves. jl

/ EikonalSolvers.jl
o

(o) - SesmicWaves. jl

HMCLab \ MCsamplers.jl

and more...

https://hmclab.science, https:/ptsolvers.github.io/ GPU4GEO
8/18

https://hmclab.science
https://ptsolvers.github.io/GPU4GEO

Code: single xPU 2D kernel w/ ParallelStencil.jl

dparallel_.

pcur, pnew

Omlin S. (CSCS), Réass L. (ETH) [https:/github.com/omlins/ParallelStencil.l] 918

https://github.com/omlins/ParallelStencil.jl

Code: multi-xPU 2D kernel
w/ ParallelStencil.jl + ImplicitGlobalGrid. jl

Omlin S. (CSCS), Réss L. (ETH) [https://github.com/eth-cscs/ImplicitGlobalGrid.jl]

10/18

https://github.com/eth-cscs/ImplicitGlobalGrid.jl

Outline

3. Numerical experiments and benchmarks

Numerical experiments: Shepp-Logan phantom inversion

True model

2100

2000

Inversion setup

Sources: 16 1900
Receivers: 32 _
Ricker wavelet at various = £
; € 1800 £
frequencies = s
Model size: 701x701 N 5
C-PML layers: 20
Timesteps forward: 12000 1700
Optim algo: L-BFGS
1600
1500

Shepp L., Logan B., 1974: The Fourier Reconstruction of a Head Section 11718

Numerical experiments: Shepp-Logan phantom inversion

Current model

True model

misfit (logl0 axis)

10°

Misfit

\\\\\\

[50 100 150

iterations

11/18

Numerical experiments: Shepp-Logan phantom inversion

Current model

True model

misfit (logl0 axis)

10°

Misfit

\\\\\\

[50 100 150

iterations

11/18

Numerical experiments: Shepp-Logan phantom inversion

Current model

True model

misfit (logl0 axis)

10°

b 30 kHz
/ 40 kHz
' 50 kHz
\ / 60 kHz
2
3

Misfit

10 kHz
20 kHz

100 kHz

50 100 150
iterations

11/18

Numerical experiments: Overthrust model inversion (with correlated source

noise)

True model

3000
Inversion setup

Sources: 10
Receivers: 30 ~
Ricker wavelet at 12Hz

Model size: 896x594
C-PML layers: 20

Free surface BDC at top
Timesteps forward: 2500
Optim algo: L-BFGS

2750 @

vp [m,

2500

2250

1200
x[m]

SEG/EAGE Salt and Overthrust Models [https://wiki.seg.org/wiki/SEG/EAGE_Salt_and_Overthrust_Models]
12/18

https://wiki.seg.org/wiki/SEG/EAGE_Salt_and_Overthrust_Models

Numerical experiments: Overthrust model inversion (with correlated source
noise)

Current model True model
0 3200
200
: L
~ a
g
600
EImEI 200 400 600 800 1000 1200
x[m]
Misfit
*
100
) .
%
2 .
2 .
>
8 .
2 .
= .
G ® .
a .
E L AEC Rt "
S10e g
O S O § e e 0 00 0 00 0 0
o 10 20 30 40 50

iterations

12/18

Numerical experiments: Overthrust model inversion (with correlated source
noise)

Current model True model
0 3200
200
: L
~ a
g
600
EImEI 200 400 600 800 1000 1200
x[m]
Misfit
*
100
) .
%
2 .
2 .
>
8 .
2 .
= .
G ® .
a .
E L AEC Rt "
S10e g
O S O § e e 0 00 0 00 0 0
o 10 20 30 40 50

iterations

12/18

Numerical experiments: Overthrust model inversion in 3D

Numerical experiments: Overthrust model inversion in 3D

1 330403

— 3000

l 2800
o

B
— 2600

| |
2400

— 220403

L 330403

/| 3000

I 2800
o

— 2600

| |
L 2400

— 220403

g

Numerical experiments: Overthrust model inversion in 3D

1 330403

— 3000

l 2800
o

B
— 2600

| |
2400

— 220403

L 330403

/| 3000

I 2800
o

— 2600

| |
L 2400

— 220403

g

Numerical experiments: Overthrust model inversion in 3D

L 330403

— 3000

l 2800

— 2600

|
2400

— 220403

L 330403

— 3000

l 2800

— 2600

| |
L 2400

— 220403

Benchmarks: Performance metrics

» FLOP/s-like metrics NOT adequate!
— computation is memory bounded

14/18

Benchmarks: Performance metrics

» FLOP/s-like metrics NOT adequate!
— computation is memory bounded
» Effective memory access At [byte]
— strictly needed memory loads + stores

14/18

Benchmarks: Performance metrics

» FLOP/s-like metrics NOT adequate!
— computation is memory bounded
» Effective memory access At [byte]

— strictly needed memory loads + stores
— example: acoustic 1D pressure update with n = 107 grid points (FP 64)

14/18

Benchmarks: Performance metrics

» FLOP/s-like metrics NOT adequate!
— computation is memory bounded
» Effective memory access At [byte]

— strictly needed memory loads + stores
— example: acoustic 1D pressure update with n = 107 grid points (FP 64)

» A = (n+3n)x8 =320 MB

14/18

Benchmarks: Performance metrics

» FLOP/s-like metrics NOT adequate!
— computation is memory bounded
» Effective memory access At [byte]

— strictly needed memory loads + stores
— example: acoustic 1D pressure update with n = 107 grid points (FP 64)

» A = (n+3n)x8 =320 MB
» Effective memory throughput: Te = Aert/t [byte/sec]

14/18

Benchmarks: Performance metrics

» FLOP/s-like metrics NOT adequate!
— computation is memory bounded
» Effective memory access At [byte]

— strictly needed memory loads + stores
— example: acoustic 1D pressure update with n = 107 grid points (FP 64)

» A = (n+3n)x8 =320 MB
» Effective memory throughput: Te = Aert/t [byte/sec]
— same example as before, suppose t = 1073 s

14/18

Benchmarks: Performance metrics

» FLOP/s-like metrics NOT adequate!
— computation is memory bounded
» Effective memory access At [byte]

— strictly needed memory loads + stores
— example: acoustic 1D pressure update with n = 107 grid points (FP 64)

» A = (n+3n)x8 =320 MB
» Effective memory throughput: Te = Aert/t [byte/sec]

— same example as before, suppose t = 1073 s
> To = Aer/t = 320 GB/s

14/18

Benchmarks:

Benchmarking setup

GPUs Nvidia GTX 4070 &
A100

julia version 1.8.5

flags: -O3 —check-bounds=no
CUDA version:

12.1 (for GTX 4070)

11.4 (for A100)

Peak performances measured
with GPU-STREAM

20 C-PML layers in each
boundary

Repeated measurements until
+-5% of median execution time
is within the 99%
non-parametric Cl

kernels performance

Teff [GB/s]

1400

1200

1000

800

Effective memory throughput (kernels)

2D kernel

3D kernel

A100 (1389 [GB/s])

GTX 4070 (484 [GB/s])

1025
m

2049 4097 8193 16385
odel size (nx = ny)

129 257 321 401
model size (nx = ny = nz)

501

15/18

Benchmarks: kernels performance

Benchmarking setup

GPUs Nvidia GTX 4070 &
A100

julia version 1.8.5

flags: -O3 —check-bounds=no
CUDA version:

12.1 (for GTX 4070)

11.4 (for A100)

Peak performances measured
with GPU-STREAM

20 C-PML layers in each
boundary

Repeated measurements until
+-5% of median execution time
is within the 99%
non-parametric Cl

Percentage of Tpeak [%]

Percentage of peak memory bandwidth (kernels)

2D kernel

3D kernel

Al00

GTX 4070

1025

2049 4097 8193
model size (nx = ny)

129 257 321 401
model size (nx = ny = nz)

15/18

Benchmarks: forward solver execution times

Benchmarking setup
GPU Nvidia GTX 4070
julia version 1.8.5

flags: -O3 —check-bounds=no
CUDA version: 12.1 100 2D kernel 3D kernel

Percentage of solver time spent in kernel vs. overhead (GTX 4070)

.12 }
Peak performances measured [[03025 [106 I OHZ=N i0i209:1 [y [0E275] iy I
with GPU-STREAM %
20 C-PML layers in each

— 80
boundary 9

© 70

£

=]

a-) 60

>

3 so 55.7ms| [99.9ms| | 0.39s | | 1.31s | | 4.92s | | 19.4s 0.131s | |0.464s| | 2.27s 3.95 7.25 12.9s

-

o

& 40

8

c

@ 30

o

I

o 20

10 | WM overhead
. 3 kemel

Repeated measurements until . eme
+-5% of median execution time 513 1025 2049 4097 8193 16385 65 129 257 321 401 501
is within the 99% model size (nx = ny), nt = 1000 model size (nx = ny = nz), nt = 1000

non-parametric Cl

16/18

Benchmarks:

Benchmarking setup

GPUs Tesla P100 (on Piz
Daint)

julia version 1.7.1

flags: -O3 —check-bounds=no
Peak performances measured
with GPU-STREAM

20 C-PML layers in each
boundary

Measured average time per
iteration by running multiple
iterations (skip first 200
iterations for 2D, skip first 19
iterations for 3D)

(preliminary) multi-GPU weak scaling

Percentage of peak [%]

100

Peak memory bandwidth percentage of acoustic 2D/3D CPML
on multiple GPUs

~88%
a ~83%

~60%

.\JD multi-GPU

~50%

25 27 3

6 64
number of nodes/GPUs

17/18

Outline

4. Conclusions and future work

Conclusions

¢ \What we have done:

18/18

Conclusions

® What we have done:
— Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...

18/18

Conclusions

¢ \What we have done:

— Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
— multi-platform and portable...

18/18

Conclusions

¢ \What we have done:

— Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
— multi-platform and portable...
— using a high level language like Julia...

18/18

Conclusions

¢ \What we have done:

Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
multi-platform and portable...

using a high level language like Julia...

with minimal HPC knowledge...

18/18

Conclusions

¢ \What we have done:

Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
multi-platform and portable...

using a high level language like Julia...

with minimal HPC knowledge...

open source! (soon™)

18/18

Conclusions

¢ \What we have done:

Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
multi-platform and portable...

using a high level language like Julia...

with minimal HPC knowledge...

open source! (soon™)

o Still WIP:

18/18

Conclusions

¢ \What we have done:

Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
multi-platform and portable...

using a high level language like Julia...

with minimal HPC knowledge...

open source! (soon™)

e Still WIP:
— Elastic solvers

18/18

Conclusions

¢ \What we have done:

Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
multi-platform and portable...

using a high level language like Julia...

with minimal HPC knowledge...

open source! (soon™)

o Still WIP:

— Elastic solvers
— Higher order FD stencils

18/18

Conclusions

¢ \What we have done:

Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
multi-platform and portable...

using a high level language like Julia...

with minimal HPC knowledge...

open source! (soon™)

o Still WIP:

— Elastic solvers
— Higher order FD stencils
— Fully fledged multi-xPU implementations

18/18

F‘Fl23

20 Acoustic CPHL 2D xPU Acoustic CPML
Dauos | 26-28 June 2023 (nx=211,ny=211, halo=20, rcaef=0.0001, threshold=0.1%) (7x=1430, ny=810 halo=20, rcoe(=0 0001, threshold=5.0%)
switzerland . maxabsp=3.451574¢'04 § =20, maxabsp=5 33338103

ETHziirich : Z _"'

Thanks for your
attention! e

(et e e e 2. s 1%) (870, =322, 2278, ok = 2, hrshold=0.08%)

Lasvart

Giacomo Aloisi
[galoisi@student.ethz.ch]

S;UU |+
+ 200

18/18

galoisi@student.ethz.ch

Efficiently computing model parameters gradients: checkpointing

forward solver

1

Efficiently computing model parameters gradients: checkpointing

checkpoints
time

@@ @ @

1

Efficiently computing model parameters gradients: checkpointing

checkpoints
time
buffer

O I S - S ST

1

Efficiently computing model parameters gradients: checkpointing

buffer

O I S - S ST

adjoint solver

time

1

Efficiently computing model parameters gradients: checkpointing

buffer

O I S - S - W

° ° ° ° ° ° ° o«——a«—u—o

time

1

Efficiently computing model parameters gradients: checkpointing

—————

®
|
;

1

Efficiently computing model parameters gradients: checkpointing

buffer

0—»0%0—».—»0—>0H

° ° ° ° ° ° ° o«——a«—u—o

time

1

Efficiently computing model parameters gradients: checkpointing

buffer

0—>0HO—>0—>0—>0—>0

time

1

Efficiently computing model parameters gradients: checkpointing

@@ @@

N

1

	Introduction to Full-Waveform Inversion
	Theory and implementation
	Numerical experiments and benchmarks
	Conclusions and future work
	Appendix

	anm3:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

