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FWI applications: seismic tomography

Figure from Gerya et al., 2021: Dynamic slab segmentation due to brittle–ductile damage in the outer rise
Data from Hayes et al., 2018: Slab2, a comprehensive subduction zone geometry model
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FWI applications: seismic tomography

Figure from Gerya et al., 2021: Dynamic slab segmentation due to brittle–ductile damage in the outer rise
Data from Tao et al., 2018: Seismic Structure of the Upper Mantle Beneath Eastern Asia From Full Waveform Seismic Tomography
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FWI applications: medical ultrasound tomography

initial model reconstruction target model

Figure from Marty et al., 2022: Elastic Full-Waveform Inversion for Transcranial Ultrasound Computed Tomography using Optimal Transport
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Solving the forward problem: acoustic wave equation

Acoustic wave PDE with homogeneous Dirichlet BDCs
Ω ⊂ Rn, t ∈ [0, T ], p = p(x, t) : Rn × [0, T ] → R, s = s(x, t) : Rn × [0, T ] → R, c = c(x) : Rn → R

1
c(x)2

∂2p(x, t)
∂t2

= ∇2
x p(x, t) + s(x, t) , in Ω × [0, T ],

p(x, t) = 0 , in ∂Ω × [0, T ]
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Solving the forward problem: acoustic wave equation

Acoustic wave PDE with C-PML BDCs
Let ∂̃iΩ be and extension of ∂Ω in the direction i.

1
c2
∂2p

∂t2
= ∇2

x p+ s , in Ω × [0, T ],

1
c2
∂2p

∂t2
= ∇2

x p+ ∂ψi

∂i
+ ξi , in ∂̃iΩ × [0, T ]
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Solving the forward problem: acoustic wave equation

2D acoustic wave discretization with central FD (2nd order in space and time)

pt+1
x,y = 2pt

x,y − pt−1
x,y

+ c2
x,y∆t2

(
pt

x+1,y − 2pt
x,y + pt

x−1,y

∆x2

)

+ c2
x,y∆t2

(
pt

x,y+1 − 2pt
x,y + pt

x,y−1

∆y2

)
+ c2

x,y∆t2st
x,y ,∀t ∈ [0, T ], (x, y) ∈ Ω
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Misfit functional and minimization problem

χ = χ[p(c)] = 1
2
∑

r

(pr − pobs
r ) C−1

r (pr − pobs
r )

∂χ

∂ci

≈
χ[p(c1, . . . , ci + ∆ci, . . . , cn)] − χ[p(c1, . . . , ci, . . . , cn)]

∆ci

Time to compute χ on a 2000x2000 grid for 1000 time steps on 1 GPU ≈ 0.4 seconds
Time to compute gradient → 16 ∗ 105 seconds ≈ 444 hours! NOT feasible!
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Efficiently computing model parameters gradients: adjoint equation

G(p, c) := ∇2
x p+ s− 1

c2
∂2p

∂t2
= 0

L := χ+
∫

Ω

∫ T

0
λG(p, c) dt dx

∂L
∂p

= 0

i.b.p.===⇒ 1
c2
∂2λ

∂t2
= ∇2

x λ+ s̃ , in Ω × [T, 0]

s̃r = ∂χ

∂p
= C−1

r (pr − pobs
r ) , ∀r

∂L
∂ci

G
!=0

↓= ∂χ

∂ci

= 2
c3

i

∫ T

0
λ
∂2p

∂t2
dt

Time to gradient ≈ 1.8 seconds!
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Acoustic FWI recipe

1. Choose initial model c = c0

2. Solve acoustic wave equation to get pressure field p

3. Compute χ(p) and adjoint source s̃

4. Solve adjoint equation to get adjoint field λ

5. Compute ∇c χ while solving adjoint equation
6. Update model c using χ(p) and ∇c χ with an optimization algorithm (GD, L-BFGS, etc...) and go

back to step 2. until convergence
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HMCLab.jl and SeismicWaves.jl

EikonalSolvers.jl

SesmicWaves.jl

MCsamplers.jl

and more...

https://hmclab.science, https://ptsolvers.github.io/GPU4GEO
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Code: single xPU 2D kernel w/ ParallelStencil.jl

@parallel_indices (i, j) function update_p(
pold, pcur, pnew, halo, c, dt, dx, dy

)
# pressure derivatives in space
d2p_dx2 = (pcur[i+1, j] - 2.0 * pcur[i, j] + pcur[i-1, j]) / (dxˆ2)
d2p_dy2 = (pcur[i, j+1] - 2.0 * pcur[i, j] + pcur[i, j-1]) / (dyˆ2)
# update pressure
pnew[i, j] = 2.0 * pcur[i, j] - pold[i, j] + c[i, j]ˆ2 * dtˆ2 * (d2p_dx2 + d2p_dy2)

return nothing
end

...
for it = 1:nt

# update pressure
@parallel (2:(nx-1), 2:(ny-1)) update_p(pold, pcur, pnew, halo, c, dt, dx, dy)
# inject sources
@parallel (1:nsrcs) inject_sources(pnew, dt2srctf, possrcs, it)
# record receivers
@parallel (1:nrecs) record_receivers(pnew, traces, posrecs, it)
# swap pointers
pold, pcur, pnew = pcur, pnew, pold

end
...

Omlin S. (CSCS), Räss L. (ETH) [https://github.com/omlins/ParallelStencil.jl]
9/18
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Code: multi-xPU 2D kernel
w/ ParallelStencil.jl + ImplicitGlobalGrid.jl

...
for it = 1:nt

@hide_communication b_width begin
# update pressure
@parallel (2:(nx-1), 2:(ny-1)) update_p(pold, pcur, pnew, halo, c, dt, dx, dy)
# inject sources
@parallel (1:nsrcs) inject_sources(pnew, dt2srctf, possrcs, it)
# record receivers
@parallel (1:nrecs) record_receivers(pnew, traces, posrecs, it)
# exchange new pressure with other nodes
update_halo(pnew)

end
# swap pointers
pold, pcur, pnew = pcur, pnew, pold

end
...

Omlin S. (CSCS), Räss L. (ETH) [https://github.com/eth-cscs/ImplicitGlobalGrid.jl]
10/18
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Numerical experiments: Shepp-Logan phantom inversion

Inversion setup
Sources: 16
Receivers: 32
Ricker wavelet at various
frequencies
Model size: 701x701
C-PML layers: 20
Timesteps forward: 12000
Optim algo: L-BFGS

10 kHz
20 kHz

30 kHz
40 kHz

50 kHz
60 kHz

100 kHz
150 kHz

Shepp L., Logan B., 1974: The Fourier Reconstruction of a Head Section 11/18
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Numerical experiments: Overthrust model inversion (with correlated source
noise)

Inversion setup
Sources: 10
Receivers: 30
Ricker wavelet at 12Hz
Model size: 896x594
C-PML layers: 20
Free surface BDC at top
Timesteps forward: 2500
Optim algo: L-BFGS

SEG/EAGE Salt and Overthrust Models [https://wiki.seg.org/wiki/SEG/EAGE_Salt_and_Overthrust_Models]
12/18
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Numerical experiments: Overthrust model inversion (with correlated source
noise)
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Numerical experiments: Overthrust model inversion (with correlated source
noise)
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Numerical experiments: Overthrust model inversion in 3D
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Numerical experiments: Overthrust model inversion in 3D
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Numerical experiments: Overthrust model inversion in 3D
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Numerical experiments: Overthrust model inversion in 3D
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Benchmarks: Performance metrics

▶ FLOP/s-like metrics NOT adequate!
– computation is memory bounded

▶ Effective memory access Aeff [byte]
– strictly needed memory loads + stores
– example: acoustic 1D pressure update with n = 107 grid points (FP 64)

▶ Aeff = (n + 3n) ∗ 8 = 320 MB
▶ Effective memory throughput: Teff = Aeff/t [byte/sec]

– same example as before, suppose t = 10−3 s
▶ Teff = Aeff/t = 320 GB/s
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Benchmarks: kernels performance

Benchmarking setup
GPUs Nvidia GTX 4070 &
A100
julia version 1.8.5
flags: -O3 –check-bounds=no
CUDA version:
12.1 (for GTX 4070)
11.4 (for A100)
Peak performances measured
with GPU-STREAM
20 C-PML layers in each
boundary

Repeated measurements until
+-5% of median execution time
is within the 99%
non-parametric CI

513 1025 2049 4097 8193 16385
model size (nx = ny)
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Te
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3D kernel

Effective memory throughput (kernels)
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Repeated measurements until
+-5% of median execution time
is within the 99%
non-parametric CI
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Benchmarks: forward solver execution times

Benchmarking setup
GPU Nvidia GTX 4070
julia version 1.8.5
flags: -O3 –check-bounds=no
CUDA version: 12.1
Peak performances measured
with GPU-STREAM
20 C-PML layers in each
boundary

Repeated measurements until
+-5% of median execution time
is within the 99%
non-parametric CI

513 1025 2049 4097 8193 16385
model size (nx = ny), nt = 1000
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Benchmarks: (preliminary) multi-GPU weak scaling

Benchmarking setup
GPUs Tesla P100 (on Piz
Daint)
julia version 1.7.1
flags: -O3 –check-bounds=no
Peak performances measured
with GPU-STREAM
20 C-PML layers in each
boundary

Measured average time per
iteration by running multiple
iterations (skip first 200
iterations for 2D, skip first 19
iterations for 3D)
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Outline

1. Introduction to Full-Waveform Inversion

2. Theory and implementation

3. Numerical experiments and benchmarks
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Conclusions

• What we have done:

– Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
– multi-platform and portable...
– using a high level language like Julia...
– with minimal HPC knowledge...
– open source! (soonTM)

• Still WIP:

– Elastic solvers
– Higher order FD stencils
– Fully fledged multi-xPU implementations

18/18



Conclusions

• What we have done:
– Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...

– multi-platform and portable...
– using a high level language like Julia...
– with minimal HPC knowledge...
– open source! (soonTM)

• Still WIP:

– Elastic solvers
– Higher order FD stencils
– Fully fledged multi-xPU implementations

18/18



Conclusions

• What we have done:
– Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
– multi-platform and portable...

– using a high level language like Julia...
– with minimal HPC knowledge...
– open source! (soonTM)

• Still WIP:

– Elastic solvers
– Higher order FD stencils
– Fully fledged multi-xPU implementations

18/18



Conclusions

• What we have done:
– Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
– multi-platform and portable...
– using a high level language like Julia...

– with minimal HPC knowledge...
– open source! (soonTM)

• Still WIP:

– Elastic solvers
– Higher order FD stencils
– Fully fledged multi-xPU implementations

18/18



Conclusions

• What we have done:
– Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
– multi-platform and portable...
– using a high level language like Julia...
– with minimal HPC knowledge...

– open source! (soonTM)
• Still WIP:

– Elastic solvers
– Higher order FD stencils
– Fully fledged multi-xPU implementations

18/18



Conclusions

• What we have done:
– Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
– multi-platform and portable...
– using a high level language like Julia...
– with minimal HPC knowledge...
– open source! (soonTM)

• Still WIP:

– Elastic solvers
– Higher order FD stencils
– Fully fledged multi-xPU implementations

18/18



Conclusions

• What we have done:
– Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
– multi-platform and portable...
– using a high level language like Julia...
– with minimal HPC knowledge...
– open source! (soonTM)

• Still WIP:

– Elastic solvers
– Higher order FD stencils
– Fully fledged multi-xPU implementations

18/18



Conclusions

• What we have done:
– Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
– multi-platform and portable...
– using a high level language like Julia...
– with minimal HPC knowledge...
– open source! (soonTM)

• Still WIP:
– Elastic solvers

– Higher order FD stencils
– Fully fledged multi-xPU implementations

18/18



Conclusions

• What we have done:
– Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
– multi-platform and portable...
– using a high level language like Julia...
– with minimal HPC knowledge...
– open source! (soonTM)

• Still WIP:
– Elastic solvers
– Higher order FD stencils

– Fully fledged multi-xPU implementations

18/18



Conclusions

• What we have done:
– Efficient (and scalable) FD acoustic wave equation forward and adjoint solver...
– multi-platform and portable...
– using a high level language like Julia...
– with minimal HPC knowledge...
– open source! (soonTM)

• Still WIP:
– Elastic solvers
– Higher order FD stencils
– Fully fledged multi-xPU implementations

18/18



Thanks for your
attention!

Giacomo Aloisi
[galoisi@student.ethz.ch]

18/18

galoisi@student.ethz.ch


Efficiently computing model parameters gradients: checkpointing

time

time

p0 pt

forward solver
pk p2k p3k

checkpoints

a0 at

adjoint solver

bufferbuffer

1/1



Efficiently computing model parameters gradients: checkpointing

time

time

p0 pt

forward solver
pk p2k p3k

checkpoints

a0 at

adjoint solver

bufferbuffer

1/1



Efficiently computing model parameters gradients: checkpointing

time

time

p0 pt

forward solver
pk p2k p3k

checkpoints

a0 at

adjoint solver

bufferbuffer

1/1



Efficiently computing model parameters gradients: checkpointing

time

time

p0 pt

forward solver
pk p2k p3k

checkpoints

a0 at

adjoint solver

bufferbuffer

1/1



Efficiently computing model parameters gradients: checkpointing

time

time

p0 pt

forward solver
pk p2k p3k

checkpoints

a0 at

adjoint solver

bufferbuffer

1/1



Efficiently computing model parameters gradients: checkpointing

time

time

p0 pt

forward solver
pk p2k p3k

checkpoints

a0 at

adjoint solver

bufferbuffer

1/1



Efficiently computing model parameters gradients: checkpointing

time

time

p0 pt

forward solver
pk p2k p3k

checkpoints

a0 at

adjoint solver

bufferbuffer

1/1



Efficiently computing model parameters gradients: checkpointing

time

time

p0 pt

forward solver
pk p2k p3k

checkpoints

a0 at

adjoint solver

bufferbuffer

1/1



Efficiently computing model parameters gradients: checkpointing

time

time

p0 pt

forward solver
pk p2k p3k

checkpoints

a0 at

adjoint solver

bufferbuffer

1/1


	Introduction to Full-Waveform Inversion
	Theory and implementation
	Numerical experiments and benchmarks
	Conclusions and future work
	Appendix

	anm3: 
	3.20: 
	3.19: 
	3.18: 
	3.17: 
	3.16: 
	3.15: 
	3.14: 
	3.13: 
	3.12: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


