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Clouds need to be parameterized in climate models

Most clouds are subgrid-scale phenomena

Cloud cover scheme

Parameterizations in ICON

Adapted from Giorgetta, et al. (2018)
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ICON’s current cloud cover scheme misrepresents observations

Underestimation

Annually averaged cloud cover profile over Barbados

Crueger, et al. (2018)

Overestimation

Models

Observations
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We train schemes on coarse-grained global high-resolution data

Coarse-graining

Coarse-grained 
state variables Coarse-grained 

cloud cover

ML-based scheme

Storm-Resolving Models (SRMs) Our approach: Temperature

Humidity

Pressure

Water vapor

Cloud water

Cloud ice
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Coarse-graining on ICON’s irregular grid is challenging

Blue cell: Coarse-scale ICON grid cell

Green cells: Fine-scale ICON-SRM grid cells

ICON’s horizontal fields ICON’s vertical layers

Terrain-following hybrid sigma height gridExample of cloud cover:

Coarse-graining

Grundner et al. (2022)



Three neural network types as ML-based cloud cover schemes

Grid cell based Neighborhood based Column based

Input features are a subset of: 

Temperature; pressure; air density; zonal, meridional wind; specific humidity; cloud ice; cloud water; geometric height;

fraction of lakes, land, sea ice; Coriolis parameter

Output feature: Cloud Cover

21km

0km
27𝑝 + 𝑠 inputs 27 outputs1 output3𝑝 + 𝑠 inputs𝑝 + 𝑠 inputs 1 output
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local non-local

Grundner et al. (2022)
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These neural networks can accurately reproduce cloud cover!

Reference
(Coarse-grained)

ML estimate
(Some columns over land

excluded from training)

Hovmoeller plot

Grundner et al. (2022)
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With XAI we can explain our neural network predictions

NN1 generalization error

NN1 (generalization)

NN2 (on its training set)

Grundner et al. (2022)NN features
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But what if our schemes were explainable by construction?

Grundner et al., JAMES, 2023, subm.
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Our best data-driven analytical scheme performs competitively...

Analytical scheme Ground Truth              

Grundner et al., JAMES, 2023, subm.
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…is interpretable and fulfills physical constraints by construction

Boxes from Muhlbauer et al., 2014

Physical Constraints

Analytical scheme Ground Truth              

Grundner et al., JAMES, 2023, subm.
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Summary of the ‘offline’ section

• While deep learning methods are powerful and explainable post-hoc, they are less interpretable

• We can retain interpretability by learning nonlinear equations directly from the data, using 

symbolic regression methods

• We discover a new data-driven, analytical cloud cover scheme which is characterized by an 

excellent trade-off between performance and simplicity

• One of its three terms predominantly captures marine stratocumuli

• Physical constraints can be easily verified or enforced in the cloud cover equation
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We use FKB to couple our neural networks to ICON

Ott et al. (2020)

GitHub

Keras: Model training convection

gravity wave 

drag

turbulence

microphysics

cloud cover

radiation

ICON

…

FKB – Python

> Conversion of the NN 

(h5 → txt)

FKB - Fortran NN library

> Loads & processes 

converted NNs at the start 

of ICON
ICON climate model

cloud cover

https://github.com/scientific-computing/FKB
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Coupled ‘online’ ICON-ML simulations yield reasonable results!

Short simulation for the same timespan as the high-res data
> Reference to compare to & NNs know climatic conditions
→ Most ICON-ML simulations are closer to the high-res data

2/11/20 2/29/202/17/20

Grundner et al., in prep.

2/23/20

DYAMOND SRM

ERA5

ICON-A

cell-based NN

10-feat NN

4-feat NN

5-feat NN

6-feat NN

column NN

neighborhood NN

eqn., physical vars

eqn., norm. vars

eqn., adj. mean/std

ICON-ML
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ICON-ML improves upon low-level total cloud cover

mean(clt_ICON) – mean(clt_SRM)

ICON-A (RMSE=0.387)

overestimationunderestimation

Grundner et al., in prep.
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ICON-ML analytic equation (RMSE=0.360)ICON-ML 4-feat NN (RMSE=0.384)

Cloud Cover difference (in [-1,1])
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Good results even though NNs in ICON are out-of-distribution

→ The ML-based schemes in ICON-A face out-of-distribution cloud water/iceGrundner et al., in prep.

Cloud Ice [g/kg]Cloud Water [g/kg]
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2-year long simulation shows stability of ICON-ML

→ No model drifts in longer simulations

11/1/05    3/6/06    7/9/06  11/11/06  3/16/07  7/19/07  

Grundner et al., in prep.



18

Challenge: ICON-NN runtime increased by a factor of 1.7

ICON-ML simulations

Grundner et al., in prep.
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Summary of the ‘online’ section

Summary

• Successful coupling of ML based schemes to ICON-A using the FKB

• The resulting ICON-ML model is stable

• Performance (measured through mismatch to high-res) already competitive to ICON-A 

Potential for further improvements

• Working on additional ML based parameterizations (e.g., convection) 

• Meanwhile: ICON-ML results can be improved further by transfer learning cloud cover NNs to 

ICON-A output (and its inherent biases)

• High-resolution data used for evaluation only covers a relatively small time span. 

Comparison to observations instead?

• Increase in computational runtime when replacing the simple cloud cover scheme by NNs 

(need efficient Python-Fortran bridges)




