
Testing? Testing. Testing!

How RSEs can Assure Software Quality in Complex HPC Code Bases

July 11, 2023 Ivo Kabadshow PASC 2023 | Jülich Supercomputing Centre

Member of the Helmholtz Association

Map-Signs Software Engineering
Why do we need it?

The code you write makes you a programmer.

The code you delete makes you a good one.

The code you don’t have to write makes you a great one.

BOOK Mario Fusco (Principal Software Engineer)

Member of the Helmholtz Association July 11, 2023 Slide 1



CODE-BRANCHWhy Does Software Engineering Matter? I/II
The usual way of extending code in HPC

Angle-Double-Right Algorithm

Angle-Double-Right MPI

Angle-Double-Right Threading/Tasking

Angle-Double-Right ILP/Unrolling

Angle-Double-Right Vectorization

Angle-Double-Right GPU-Offloading

Member of the Helmholtz Association July 11, 2023 Slide 2

CODE-BRANCHWhy Does Software Engineering Matter? I/II
Parallelization is hidden in different layers (find the right abstractions)

Angle-Double-Right Algorithm

Angle-Double-Right MPI

Angle-Double-Right Threading/Tasking

Angle-Double-Right ILP/Unrolling

Angle-Double-Right Vectorization

Angle-Double-Right GPU-Offloading

Member of the Helmholtz Association July 11, 2023 Slide 3



HPC Requirements

HPC Code

Precise

Performant Portable

Maintainable Composable

Member of the Helmholtz Association July 11, 2023 Slide 4

CODE-BRANCHWhy Does Software Engineering Matter? II/II
Portability?

Member of the Helmholtz Association July 11, 2023 Slide 5



CODE-BRANCHWhy Does Software Engineering Matter? II/II
Portability Via Abstractions!

Member of the Helmholtz Association July 11, 2023 Slide 6

Challenges
Goal: Optimal time to solution on every platform

SLIDERS-H Flexibility

Angle-Double-Down Hardware: CPU/GPU

ILP, SIMD, OoOE

Cache levels & sizes

NUMA

Threading & MPI

WRENCH Configurability

Angle-Double-Down Algorithm

Different implementations

Different critical paths

CODE-BRANCH Customization

Angle-Double-Down Application

Physical model

Accuracy range

System size

Monolithic Softwarestack

m HW, n Applications → m × n

dependencies

Modular Softwarestack

m HW, n Applications → m+ n

dependencies

Member of the Helmholtz Association July 11, 2023 Slide 7



Code Development Usecase: FMSolvr
Library: Fast Multipole Method for MD

2001 2004 2010 2013 2015 2020

Initial Fortran

Version

USER

Algorithmic

Extensions

USERUSER

SVN,

Scafacos

Library

USERUSER

Move to

C++11, GNU

Make, Git

USERS

Taskification

USERS

CMake, CI

USERS

Modularization,

C++20

USERS

Unittests of components

Split into multiple separate/independent libraries (C++ template library, Eventify, FMSolvr)

Member of the Helmholtz Association July 11, 2023 Slide 8

Developer Roles
Extract reusable components from FMSolvr for Smilei PIC code

interface

FMSolvr

USER H. Dachsel

USER I. Kabadshow

Smilei PIC

USER M. Lobet (Aidas)

USER J. Cuevas (Aidas)

Eventify/Helper

USER A. Beckmann

USER M. Zych

Software Engineering Domain Science

Member of the Helmholtz Association July 11, 2023 Slide 9



Everything will be fine ...
Single manual test on x86-64 with default compiler/settings

Member of the Helmholtz Association July 11, 2023 Slide 10

... or not
Extensive tests on x86-64

Member of the Helmholtz Association July 11, 2023 Slide 11



... or not
Extensive tests on ARM

Member of the Helmholtz Association July 11, 2023 Slide 12

Combinatorial Explosion Of Possible Tests
Tests can easily reach into thousands → We cannot test everything

Hardware Features

Floating Point Precision (float, double, long double, float128) ×4

CPU Architecture (i686, x86-64, ARM, ARM64, RISC-V) [GPU/FPGA?] ×5

Microarchitecture (SSE, AVX, AVX2, AVX512, Neon) ×5

Build Environment

Compiler (GNU, Clang, Intel) ×3

Mode (Debug, Release) ×2

Build system (GNU Make, Ninja) ×2

Compiler Version

Member of the Helmholtz Association July 11, 2023 Slide 13



Why Tests? 1/2
DOI: 10.1126/science.314.5807.1856

Retractions

Simulation data was correct

Analysis SW flipped two columns

Member of the Helmholtz Association July 11, 2023 Slide 14

Why Tests? 2/2
Fluctuating developer team

How persistent is your developer team?

Mostly one core developer (staff)

Master and PhD students (1-3 years)

Guests (3-12 months)

Do you trust your developers unconditionally?

Is the code correct in all required cases?

Who do you ask, if a developer has left?

Is the provided code in a reusable/extendable state?

Member of the Helmholtz Association July 11, 2023 Slide 15



Setting Up The Ecosystem
What do we need to make this work?

CODE Automated Build Process and Dependency Management

CMake, GNU Make, Ninja

CODE-BRANCH Change Management + Continuous Integration Tools

Version control (git, svn) + Ticket system (bug tracker)

Test framework (Googletest, Catch 2)

CI (Jenkins, Teamcity, gitlab)

BOX-OPEN Package Manager for C++ (optional)

Conan

vcpkg

Member of the Helmholtz Association July 11, 2023 Slide 16

What To Tests
Tests and Their Coverage

What to test?

Acceptance tests

check if customer requirements are met on target environment

System tests

check specified requirements on target environment

Integration tests/interface tests

check interaction between certain modules and components

Module tests (unit/component tests)

check specific unit (restrictions, constraints)

Is

CheckCheckCheck

CheckCheck

Check

Check

Should

Check

Check

CheckCheck

CheckCheckCheck

What about performance?

Performance tests

check if performance requirements are met on target hardware

Member of the Helmholtz Association July 11, 2023 Slide 17



How to measure code quality?
Code Test Coverage

What is the quality of the software?

Untested/uncovered code should be expected to be wrong

If test cases are too complex, split the code further, introduce internal interfaces

Test the smallest possible unit (e.g. functions)

If every line is covered, bugs are likely to be found easily

INFO-CIRCLE Sensible tests are often better than outdated documentation

Member of the Helmholtz Association July 11, 2023 Slide 18

Test Automation
Continuous Integration

Git + Tests + CI

Tests should run automatically for each commit

Tests should be short and explain the correct usage of a piece of code

Test matrix should be sensible

Code Review

At least one branch (master) should be passing all tests

Merges into the master branch should not be possible if tests fail

Member of the Helmholtz Association July 11, 2023 Slide 19



Open Issues

Sequential Tests

Who is responsible to setup/maintain the infrastructure (RSEs?)

HPC & CI

No CI access to cluster (personal ssh key, no dedicated resources)

Hard to implement properly for every use case (compiler, os, tools, libraries)

Magic What about users quota for tests on HPC resources?

Member of the Helmholtz Association July 11, 2023 Slide 20

The Past
Based on https://xkcd.com/303/

Member of the Helmholtz Association July 11, 2023 Slide 21



The Future
Based on https://xkcd.com/303/

Member of the Helmholtz Association July 11, 2023 Slide 22

Testing? Testing. Testing!

How RSEs can Assure Software Quality in Complex HPC Code Bases

July 11, 2023 Ivo Kabadshow PASC 2023 | Jülich Supercomputing Centre

Member of the Helmholtz Association


