uNIVERSITAT  SYCL and Block-Structured Grids: Performance Impact
BAYREUTH - - -
on Simulations of Complex Costal Ocean Domains

Jonathan SchmalfuB3 @°, Daniel Zint ®, Sara Faghih-Naini ¢, Julian Stahl ¢, Markus Buttner 2, Roberto Grosso ¢, Vadym Aizinger 2

: University of Bayreuth, Scientific Computing; * jonathan.schmalfuss@uni-bayreuth.de

o New York University, Courant Institute of Mathematical Sciences; © European Centre for Medium-Range Weather Forecasts; d Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Computer Science

¢: elevation of the free water surface, h;,: bathymetric depth,

H = hy, + &: total fluid depth, f.: Coriolis parameter, (U, V) depth-integrated
horizontal velocity field, c = (¢£,U, V) local unknowns, F: forcing term,

g: gravitational acceleration, 7, ¢: bottom friction coefficient

8_§ U V

g—f{ +V- | 4 4 osUthe) o = | U + f.V -
oV uv vZ | g&(H+hy) —7p¢V — £.U -
ot J21 L 5 bf C

(Orcn, da)q, — (Alca), Voa)q, — (r(ca), ¢A)QS+SA(CA70Z771)7 ¢A>8Q€J =0

\

» topologically block-structured grid (BSG): an unstructured
Element integrals Edge integrals Y collection of blocks, each containing a structured grid

« 10 BSGs with each 1.4 mio elements,

block sizes = {32, 50, 98, 128, 200, 242, 392, 450, 800, 882}
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» Domain partitioned using triangular mesh * Fully explicit scheme, no iterative solvers
» Modal Discontinuous Galerkin (DG) bases, low order (piecewise constant/ linear/quadratic)
« Easy to parallelize, only one global barrier after each Runge-Kutta stage
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SYCL Code : Support for CPUs, GPUs, and FPGAs oJo[: sport for Bla aC ds on CPUs and GF
UTBEST - SYCL base: local memory only + minimize bytes per element + block wise halo layer
e parallization over elements — work group size of 256 items « WOork_group_size = block_size  deduplicate information e.g. normals, measure| | * reformulate boundary conditions
 edge integrals are computed redundantly, only local solution is updated  implemented via sycl::local_accessor| |only stored once per edge per block (edge to element)
» struct of arrays layout for memory efficiency * interior block elements solution is » different treatment of block boundary edges  enables equal treatment of all
e unstructured memory accesses cost mitigated by hardware caches from local memory « explicit indexing via mappings edges of block
* introduces additional algorithmic complexity * Increases memory requirements
structured access
// Pseudocode - not actual C++
for (int step = 0 ... nsteps) o
for (int rk = ... rk_stages) *OJ)
for (int element = 0 ... num elements)
integration: :process_element (/* omitted */);
unstructured access
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* Figure: BSG Impact on CPUs, best performing compiler and backend, per order left bar: unstructured performance, per order right bar: block-structured grid, color according to different algorithmic strategies

* largest speedup visible for higher order  almost no speedup visible for lower orders, larger up to 1.2 visible for higher orders
* lower order converging towards best unstructured performance  with OpenCL on Intel Xeon architecture vectorizes only for block sizes divisible by 16
* similar behaviour for AMD EPYC 7742
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 Figure: BSG Impact on GPUs, best performing compiler and backend, per order left bar: unstructured performance, per order right bar: block-structured grid, color according to different algorithmic strategies

 equal speedup visible for all orders, outperformaing unstructured up to factor 1.5 « small speedup visible for lower orders, degregation for higher orders
 performance almost identically between compilers » similar challenges for NVIDIA H100
» similar behaviour for NVIDIA Quadro RTX 6000

Block-Structured Grid Generation: HPMeshGen

Outlook

« Support of unstructured blocks

Support BSGs Generation: « BSGs for FPGAs

» standard BSGs = structured blocks

N simplification L refine blocks\,\é;;/ NN » masked BSGs = structured blocks + masking
 hybrid BSGs = structured blocks + unstructured blocks * Improving BSGs generation

* MPI + BSGs

and
triangulation
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