NIAL , ,
><2§>< University
/XN of Basel

Scalable Genomic Context Analysis
with GCsnap2 on HPC Clusters

Reto Krummenacher!, Osman Seckin Simsek!, Michéle Leemann?>, Leila T. Alexander??, Torsten Schwede?, Florina M. Ciorba', and Joana Pereira

/omr\ BIOZENTRUM

W The Center for

Molecular Life Sciences

2.3

IDepartment of Mathematics and Computer Science, University of Basel, Switzerland ?Biozentrum, University of Basel, Switzerland 3SIB Swiss Institute of Bioinformatics, Basel, Switzerland

1. Genomic Context Analysis

Genomic context analysis studies
the genomic neighborhood of a spe-
cific protein-coding gene by analyz-
ing which are nearby protein-coding
genes that may be associated with
the target protein.

When applied across multiple
species, comparing such genomic
neighborhoods can assist in pre-
dicting a protein’s biological
function [1].

By investigating patterns of gene
presence and conservation in these
neighborhoods across species, func-
tional associations between proteins
can be inferred.

GC Type 00033: AOA011QSFO (Candidatus Accumulibacter sp. BA-94) -

GGGGGGGGGGG : ADAD13TPR7 (Acinetobacter sp. 826659)

OOOOOOOOOOO » ADADL1VNE2 (Aquamicrobium defluvii)

2. Workflow of GCsnapl Desktop

GCsnapl Desktop [2]| is a Python-based tool that supports genomic context analyses.
Starting from a user-provided list of target genes, GCsnapl Desktop follows the workflow below to collect data
from multiple public databases, find gene families, summarize and annotate the collected information, and

generate interactive visual outputs.

Il A |« &l
D D @ DD O @ @
D | 0D | A K | | AU
| O D @ e 1) D

ID DN I D
CJmm @ 1DD X ! |
I @@DDD DX (|
daPEEE Pamaea®
D@ X]
D i Yo [s |) N
T [G I 10 Y Y B s Yo
(|| N B N X K |
@ | O) I O
D I BB D BB D
GEoEeEE E DETE anam
(DD D B P I
- GEE (DD DIDED

7. Evaluation of GCsnap2 Cluster

o >

We conducted three sets of experiments:

A: GCsnap2 Cluster with mpidpy.futures

B: Experiment A. + Improved taxonomy parsing
C: Portability and Performance of Experiment B.
Per-target execution time is 0.254 seconds.

Code refinement of experiment A. reduced the exe-
cution time to 0.093 seconds per target.

Average end-to-end execution time is ~ 740 seconds
for 10’000 sequences = 0.074 seconds per target,
much smaller than 1.66 seconds per target with GC-
snapl Desktop

r

I'herefore, GCsnap2 Cluster is 22X faster.

e

I'he sub-steps Find Families and Find Operons of
the workflow remain unoptimized.

A. vs. B.: 1'000 targets, 4 computing nodes,
4 ranks per node, 4 CPU cores per rank

0
s
Version
= 300
o 204 GCsnap?2 Cluster (A.)
e
T B Improved Taxonomy (B.
= 200 P y(B) 192
O
>
© 100 93
= 26 26 32
@
£ - i1 10 — I
3: End-to-end Step 1: Step 2: Step 3:
Collect Find families Annotate

GCsnap task

C.: 10'000 targets on 1 AMD computing node

1. Collect 2. Find families 3. Annotate
WP_177221279.1 > < P < o - NS)
InPUt l Find genome assembly » - » - ﬁ) epository OUtpUt
- <l » - PDB structures
- Homology models
S Ll lAWagaMsbmlBLASTp 9y
Find target and flanking
E l ORFs » @ > a <= Ps UniProt KB = Reusable
> <d 1:>‘ S — data
<
List of - - geywords
. ; o - Descriptions
Define famil ;
protein 4 l eHne TAmes - Transmembrane Interactive
. e 5
identifiers | s 1) é>) page
n3 B < - soexts TMHMM/Phobius
% @3 <@ => < |
< < g > %38 - Transmembrane
= - Signal peptides
No family

3.

Average execution time (s)

4.

For each input identifier, it
finds the n flanking genes

Limitations of GCsnapl

While effective for small datasets, GCsnapl Desktop
does not scale well for more complex workloads.

In a multicore setting, the average end-to-end ge-
nomic context analysis time for a single protein-
coding gene is 1.66 seconds.

= Large-scale analysis is infeasible

GCsnapl Desktop, end-to-end execution time

711
Number of CPU cores
600 1 s 2 s 4 mm 3
400 349 304
254
190
200 132 131 106
77 89 94
cos Bha: Nims NEEE
04 . om |
10 20 50 100

Number of target sequences

Approach

We redesigned GCsnapl Desktop to execute in dis-
tributed HPC environments.

We considered Dask [3| and mpidpy [4] to enable
distributed execution.

We pre-downloaded the required data.

Retferences

1]
2
3]
[4
5]

Then, runs all-againts-all
BLASTp searches to find
families

And for each member of a family
searches for structural models,
GO terms, TM segments, signal

peptides, etc.

5. Distributed Execution

Average execution time (s)

We conducted preleminary experiments, to evaluate
a suitable tool for distributed execution.

Up to two computing nodes, Dask.jobgueue shows
superior performance

Beyond two computing nodes mpidpy.futures ex-
hibits a lower average execution time.

Assembly parsing with 10'000 files and 4 CPU cores per node

Tool

Dask.jobqueue
B mpidpy.futures

2 4 8 16
Number of compute nodes

30
I

@)
-

N
o

N
)

-

6. Code Repository

The modular code of GCsnap2 Clus- - .

ter v1.0.0 i1s publicly available on |i|-:|.li'|"_
GitHub. e i
Scan the QR code to access the 'FII-:-_:I'E_, 4
repository. |

800 —
o) 817 o—
o 6007 658
R
=
§ 400
O oo O~ o
0 588 So& 8
g 2001 = o =<
5 <t < To)
: == Iz POl
<

O_

4x8 4%x16 4x32 8x8
MPI ranks x CPU cores per Rank
Substep

Parse Assemblies
B Find Families
B Find Operons

B Produce Output
Other Substeps
—e— End-to-end

8. Conclusion and Future Work

GCsnap2 Cluster is 22x faster then its predecessor.
The design features a modular architecture support-
ing the development of custom workflows and the
flexibility to execute in various computational envi-
ronments.

GCsnap2 Cluster enables bioinformatics analyses of
hundreds of thousands of input genetic sequences in
a matter of a few hours.

Additional work is needed to optimize the less per-
forming aspects of our implementation, notably the
sub-steps Find Families and Find Operons.

Future developments of GCsnap2 Cluster will focus
on streamlining data update processes, maintaining
accessibility, and its ease of use for life scientists.
The full paper |5| includes a comprehensive descrip-
tion of the methodology, experimental setup, and ex-
tended results.

Acknowledgments

This work was partially supported by the University of
Basel Research Fund for Excellent Junior Researchers
(Grant number: U.570.0006 to J.P.) and Swiss Na-
tional Science Foundation Weave project (Grant num-
ber: 310030L 220141 to T.S.).

Konstantinos Mavromatis, Ken Chu, Natalia Ivanova, Sean D. Hooper, Victor M. Markowitz, and Nikos C. Kyrpides. Gene context analysis in the integrated microbial
genomes (img) data management system. PLoS ONE, 4(11), November 2009. ISSN 1932-6203. doi: 10.1371/journal.pone.0007979.
Joana Pereira. Gesnap: Interactive snapshots for the comparison of protein-coding genomic contexts. Journal of Molecular Biology, 433(11), May 2021. ISSN 0022-2836.

doi: 10.1016/j.jmb.2021.166943.

Matthew Rocklin. Dask: Parallel computation with blocked algorithms and task scheduling. In Proceedings of the 14th Python in Science Conference, pages 126—132,

June 2015. doi: 10.25080/Majora-7h98e3ed-013.

Lisandro Dalcin and Yao-Lung L. Fang. mpidpy: Status update after 12 years of development. Computing in Science € Engineering, 23(4):47-54, 2021. doi: 10.1109/

MCSE.2021.3083216.

Reto Krummenacher, Michéle Leemann, Osman S. Simsek, Leila T. Alexander, Torsten Schwede, Florina M. Ciorba, and Joana Pereira. Scalable genomic context analysis
with gesnap2 on hpce clusters. In Proceedings of the Platform for Advancing Scientific Computing (PASC 2025), 2025.

