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1. Genomic Context Analysis

Genomic context analysis studies
the genomic neighborhood of a spe-
cific protein-coding gene by analyz-
ing which are nearby protein-coding
genes that may be associated with
the target protein.

When applied across multiple
species, comparing such genomic
neighborhoods can assist in pre-
dicting a  protein’s  biological
function [1].

By investigating patterns of gene
presence and conservation in these
neighborhoods across species, func-
tional associations between proteins
can be inferred.
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2. Workflow of GCsnapl Desktop

GCsnapl Desktop [2]| is a Python-based tool that supports genomic context analyses.
Starting from a user-provided list of target genes, GCsnapl Desktop follows the workflow below to collect data
from multiple public databases, find gene families, summarize and annotate the collected information, and

generate interactive visual outputs.
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7. Evaluation of GCsnap2 Cluster
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We conducted three sets of experiments:

A: GCsnap2 Cluster with mpidpy.futures

B: Experiment A. + Improved taxonomy parsing
C: Portability and Performance of Experiment B.
Per-target execution time is 0.254 seconds.

Code refinement of experiment A. reduced the exe-
cution time to 0.093 seconds per target.

Average end-to-end execution time is ~ 740 seconds
for 10’000 sequences = 0.074 seconds per target,
much smaller than 1.66 seconds per target with GC-
snapl Desktop
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I'herefore, GCsnap2 Cluster is 22X faster.

e

I'he sub-steps Find Families and Find Operons of
the workflow remain unoptimized.

A. vs. B.: 1'000 targets, 4 computing nodes,
4 ranks per node, 4 CPU cores per rank
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Average execution time (s)

4.

For each input identifier, it
finds the n flanking genes

Limitations of GCsnapl

While effective for small datasets, GCsnapl Desktop
does not scale well for more complex workloads.

In a multicore setting, the average end-to-end ge-
nomic context analysis time for a single protein-
coding gene is 1.66 seconds.

= Large-scale analysis is infeasible

GCsnapl Desktop, end-to-end execution time
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Approach

We redesigned GCsnapl Desktop to execute in dis-
tributed HPC environments.

We considered Dask [3| and mpidpy [4] to enable
distributed execution.

We pre-downloaded the required data.
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Then, runs all-againts-all
BLASTp searches to find
families

And for each member of a family
searches for structural models,
GO terms, TM segments, signal

peptides, etc.

5. Distributed Execution

Average execution time (s)

We conducted preleminary experiments, to evaluate
a suitable tool for distributed execution.

Up to two computing nodes, Dask.jobgueue shows
superior performance

Beyond two computing nodes mpidpy.futures ex-
hibits a lower average execution time.

Assembly parsing with 10'000 files and 4 CPU cores per node

Tool

Dask.jobqueue
B mpidpy.futures
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6. Code Repository

The modular code of GCsnap2 Clus- - .

ter v1.0.0 i1s publicly available on |i|-:|.li'|"_
GitHub. e i
Scan the QR code to access the 'FII-:-_:I'E_, 4
repository. |
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8. Conclusion and Future Work

GCsnap2 Cluster is 22x faster then its predecessor.
The design features a modular architecture support-
ing the development of custom workflows and the
flexibility to execute in various computational envi-
ronments.

GCsnap2 Cluster enables bioinformatics analyses of
hundreds of thousands of input genetic sequences in
a matter of a few hours.

Additional work is needed to optimize the less per-
forming aspects of our implementation, notably the
sub-steps Find Families and Find Operons.

Future developments of GCsnap2 Cluster will focus
on streamlining data update processes, maintaining
accessibility, and its ease of use for life scientists.
The full paper |5| includes a comprehensive descrip-
tion of the methodology, experimental setup, and ex-
tended results.
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