Benchmarking the Three Ps:
Performance, Portability,
and Productivity

Tom Deakin - University of Bristol

Accelerator type
(count)

NVIDIA,
202

Data: Top500 June 2025
Update from figure
shown in Deakin, Cownie,
Lin, McIntosh-Smith,
Heterogeneous
Programming for the
Homogeneous Majority
https://doi.org/10.1109/
P3HPC56579.2022.00006

17/06/25

Int

el, 5. Other, 2

AMD, 26

https://hpc.tomdeakin.com

None,
265

https://doi.org/10.1109/P3HPC56579.2022.00006
https://doi.org/10.1109/P3HPC56579.2022.00006

Host processor

(count) Arm (NVIDIA Other, 11
& Fujitsu),
22 AMD x86,
173

Intel x86,
294

Data: Top500 June 2025

17/06/25 https://hpc.tomdeakin.com

A

KANSAS anyMORE.

aV1ann

oerrene 2
ouLn %

Q axoaetn ©
¢r00: ©

Generated by Al
17/06/25 https://hpc.tomdeakin.com

17/06/25

Cascade Lake
Skylake
Knights Landing
Rome

Power 9
ThunderX?2
Graviton 2
A64FX

P100

V100

A100

Turing
Radeon VII
MI50

IrisPro Gen9

BabelStream Triad array size=2%*25

100

e

80

leile
| P

60

40

20

https://doi.org/10.1109/P3HPC51967.2020.00006

https://hpc.tomdeakin.com

From
https://intel.github.io/p3
-analysis-library

Based on Pennycook,
Sewall, Jacobsen,
Deakin, McIntosh-Smith
Navigating Performance,
Portability, and
Productivity
https://doi.org/10.1109/
MCSE.2021 727

17/06/25

Application Efficiency

=
=
I

=
oo
i

=
h
i

=
+a
|

=
¥
i

=
o

o

1 2 3 4 5 6 7 8 9 10

https://hpc.tomdeakin.com

Unportable
Single Target
Multi-Target
Consistent (30%)
Consistent (70%)
Inconsistent

=
o

=
oo

=
h

=
+a

=
M

=
o

A3ijigeliod aoueLLIOoLad

https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1109/MCSE.2021.3097276

1.0 @ ®

Can always construct Everyone wants to be
the PP=1, CC=0 by here: single source, best
combining the best performance everywhere]
codes for each But not realistic.
platform into an
application

Rising PP results from performance
increasing in one more more platforms.
Broad or narrowly-focused
optimizations cause this.

0.8 1

0.6 -

Falling CC indicates
that platform-specific Removing specialization

or adding common code

uoneziundQ

code is being added,
or common code is

0.4 -

being removed. This
is commonly found
as codes are
specialized.

pecialization

increases convergence;
this is typical of
introducing more and

higher-level abstractions.

0.2

Falling PP is rarely intentional.
New features in applications may
cause performance to drop in one
or more platforms.

Being on the PP = 0 axis From Pennycook, Sewall,
is anomalous, since at

" : Jacobsen, Deakin, McIntosh-Smith
east one platform is] .

failing Navigating Performance,
Portability, and Productivity

https://doi.org/10.1109/MCSE.202
1.3097276

0.0

| | | |
0.0 0.2 0.4 0.6 0.8 1.0
Code Convergence (1- Code Divergence)

17/06/25 https://hpc.tomdeakin.com 8

https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1109/MCSE.2021.3097276

SilverVale

Lin, Deakin, and McIntosh-Smith. A Metric for
HPC Programming Model Productivity.P3HPC
2024,

https://doi.org/10.1109/SCW63240.2024.00160

17/06/25

— https://github.com/UoB-HPC/SilverVale
Codebase ’U

Compile
C il
omplie jw Cov + DB
[i
o _‘E-r |
ad A !
| |
. | Binary i | Compilation
B
nary | wCov L : DB
1 _ i

SilverVale

' Indexing
(Eanchmark)

Codebase
DB

Generala PP Ganearale diff
mealric matric

https://hpc.tomdeakin.com 9

0.5
m Kokkos
mm OpenMP Target
B StdPar
0.4 e S5YCL {Acc,)
SYCL (LISM)
0.3 -
un
o
[
=
0.2 1
0.1 -
Lin, Deakin, and MclIntosh-
Smith. A Metric for HPC 0.0 -
Programming Model SLOC LLOC Source

Productivity.P3HPC 2024,
https://doi.org/10.1109/5C
W63240.2024.00160.

17/06/25 https://hpc.tomdeakin.com 10

xC R

ReldiFrame

@ Spack

From Koskela, et al, Principles for
Automated and Reproducible
Benchmarking, HPCTESTS, 2023
https://doi.org/10.1145/3624062.
3624133

17/06/25

https://hpc.tomdeakin.com

Code

Platform A

Build

FOM

:

el

o

R_f,—-*'_“x

| Platform B

<

Build

(5 K

FOM

1

l

—a,____'_

Analysis
_ﬂ“"—a-___ds’/__

https://doi.org/10.1145/3624062.3624133
https://doi.org/10.1145/3624062.3624133

Living Benchmarks: o
Developing benchmarks that will influence future
Digital Research Infrastructure investments

Good benchmarks ensure

that all target Reaching across
community needs are UKRI disciplines

and communities

https://ukri-bench.github.io

The project is supported by the UKRI Digital Research Infrastructure Programme under grant APP46895.

17/06/25 https://hpc.tomdeakin.com

12

Some unsolved challenges

* Building heterogeneous software is still hard
« Spack isn’t a panacea - still requires per-platform specalisation (variants)

 Tension in automated tooling for running benchmarks
« Ramble and ReFrame great options for recording the process (reproducing)
« Tension between platform-specific changes and out of box behaviour

« Just as hard to set up experiment on a “heterogeneous zoo”, but at least it
recorded what you did automatically

* How do | know if my benchmark is efficient on that platform?

« Performance modelling tools insufficient to model program/kernel
efficiency

« E.g., lots of good tools to measure Roofline, but still need
intuition/analytical model to verify arithmetic intensity is correct

17/06/25 https://hpc.tomdeakin.com 13

References

Koskela, Christidi, Giordano, Dubrovska,,({uinn, Maynard, Case, Olgu, and Deakin.
“Principles for Automated and Reproducible Benchmarking.” In First International Workshop
on HPC Testing and Evaluation of Systems, Tools, and Software Held in Conduction with
Supercomputing (HPCTESTS). IEEE, 2023. https://doi.org/10.1145/3624062.3624133

Deakin, Poenaru, Lin, and Mclntosh-Smith. “Tracking Performance Portability on the Yellow
Brick Road to Exascale.” In International Workshop on Performance, Portability and
Productivity in HPC Held in Conjunction with Supercomputing (P3HI5C). IEEE, 2020.
https://doi.org/10.1109/P3HPC51967.2020.00006

Deakin, Cownie, Lin, and McIntosh-Smith, “Heterogeneous Programming for the
Homogeneous Majority.” In International Workshop on Performance, Portability and
Productivity in HPC (P3HPC), 2022. https: //doi.org/10.1109/P3HPC56579.2022.00006

Lin, Deakin, and MclIntosh-Smith. “A Metric for HPC Programming Model Productivity.”
In International Workshop on Performance, Portability and Productivity in HPC Held in
Conjunction with Supercomputin 8P3HPC$. IEEE, 20Z4.
https://doi.org/10.1109/SCW63740.2024.00160

Pennycook, Sewall, Jacobsen, Deakin, and McIntosh-Smith, “Navigating Performance,
Portability and Productivity.” Computing in Science and Engineering, 2021.
https://doi.org/10.1109/MCSE.2021.3097276

17/06/25 https://hpc.tomdeakin.com

r'.(A

Tom Deakin and Timothy G. Mattson

{ PROGRAMMING
//YOUR GPU WITH

5 /) OPENMP

'
¥ Performance Portability for GPUs

7

14

https://doi.org/10.1145/3624062.3624133
https://doi.org/10.1109/P3HPC51967.2020.00006
https://doi.org/10.1109/P3HPC56579.2022.00006
https://doi.org/10.1109/SCW63240.2024.00160
https://doi.org/10.1109/MCSE.2021.3097276

	Slide 1: Benchmarking the Three Ps: Performance, Portability, and Productivity
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Some unsolved challenges
	Slide 14: References

