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Can always construct Everyone wants to be
the PP=1, CC=0 by here: single source, best
combining the best performance everywhere]
codes for each But not realistic.
platform into an
application

Rising PP results from performance
increasing in one more more platforms.
Broad or narrowly-focused
optimizations cause this.
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Falling CC indicates
that platform-specific Removing specialization

or adding common code

uoneziundQ

code is being added,
or common code is

0.4 -

being removed. This
is commonly found
as codes are
specialized.

pecialization

increases convergence;
this is typical of
introducing more and

higher-level abstractions.

0.2

Falling PP is rarely intentional.
New features in applications may
cause performance to drop in one
or more platforms.

Being on the PP = 0 axis From Pennycook, Sewall,
is anomalous, since at

" : Jacobsen, Deakin, McIntosh-Smith
east one platform is ] .

failing Navigating Performance,
Portability, and Productivity
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SilverVale

Lin, Deakin, and McIntosh-Smith. A Metric for
HPC Programming Model Productivity.P3HPC
2024,

https://doi.org/10.1109/SCW63240.2024.00160
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Living Benchmarks: o
Developing benchmarks that will influence future
Digital Research Infrastructure investments

Good benchmarks ensure

that all target Reaching across
community needs are UKRI disciplines

and communities

https://ukri-bench.github.io

The project is supported by the UKRI Digital Research Infrastructure Programme under grant APP46895.
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Some unsolved challenges

* Building heterogeneous software is still hard
« Spack isn’t a panacea - still requires per-platform specalisation (variants)

 Tension in automated tooling for running benchmarks
« Ramble and ReFrame great options for recording the process (reproducing)
« Tension between platform-specific changes and out of box behaviour

« Just as hard to set up experiment on a “heterogeneous zoo”, but at least it
recorded what you did automatically

* How do | know if my benchmark is efficient on that platform?

« Performance modelling tools insufficient to model program/kernel
efficiency

« E.g., lots of good tools to measure Roofline, but still need
intuition/analytical model to verify arithmetic intensity is correct
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