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Outline

▪ Introduction to deep learning with in-memory computing

▪ IBM HERMES Project Chip 

▪ Software/applications advancements towards next-gen AIMC accelerators

▪ 2 promising architecture advancements towards next-gen AIMC accelerators

▪ Conclusion
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Artificial deep neural networks

Transformers

Convolutional neural 
networks

He et al., “Deep Residual Learning for 
Image Recognition”, CVPR (2016)

Vaswani et al., “Attention is 
all you need”, NeurIPS (2017)
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dog

A revolution fueled by deep neural networks
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The arrival of Graphical Processing Units

DNN + backprop (1980s) 2010

The lost decades

16,000 Central Processing Units (CPUs) (2010) 
→ 48 Graphical Processing Units (GPUs) (2012)

Hooker, “The hardware lottery”, Comm. ACM (2021)
Silver et al., “Mastering the game of Go without 

human knowledge”, Nature (2017)
Dally et al., “Evolution of the Graphics 
Processing Unit”, IEEE Micro (2021)
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Hardware challenges for DNNs
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Reuther et al., “AI and ML Accelerator Survey and 
Trends”, IEEE HPEC (2022 )

100fJ/Operation

Murmann, “Mixed-Signal Computing for 
Deep Neural Network Inference”, IEEE 

TVLSI (2020)

~150-200fJ/Operation

> 100 MB

40-100pJ/byte
10-100KB

1-10pJ/byte

PE PE PE

PE PE PE

PE PE PE
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The plateauing of energy efficiency

5Manuel Le Gallo, IBM Research - Europe



Sebastian et al., “Memory devices and applications for in-memory computing”, Nature 
Nano (2020)

Digital In-memory Computing 

(DIMC) with SRAM

Analog In-memory Computing  

(AIMC) with SRAM

Analog In-memory Computing 

(AIMC) with Flash memory

Analog In-memory Computing 

(AIMC) with PCM/ReRAM

▪ Can we architect a DNN accelerator where the synaptic weights are kept stationary?

In-memory computing-based DNN accelerator 
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Sebastian et al., “Memory devices and applications for in-memory computing”, Nature Nanotech. (2020)
Eleftheriou et al., “Deep learning acceleration based on in-memory computing”, IBM JRD (2019)

In-memory computing-based DNN accelerator 
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2018 2019 2020 2021 2022 2023

IBM AIHWKit

HERMES

IMC-based DNN accelerators @ IBM Research - Zurich
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IBM’s Recent AIMC-based AI 
Chip Prototypes
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IBM HERMES project chip

▪ 64 tiles with 256x256 crossbar arrays
▪ ADCs integrated per tile along with digital 

processing units
▪ A digital communication fabric

▪ 34 tiles with 512x512 crossbar arrays
▪ ADCs not integrated per tile
▪ Analog communication: Uses a 2D routing mesh to 

transmit data in duration format 

Ambrogio et al., Nature (2023)Le Gallo et al., Nature Electronics 
(2023)

Fabricated in 14nm CMOS technology node with embedded phase-change memory in the back-end
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▪ Each of the 64 cores comprises 256x256 crossbar arrays of unit cells with peripheral circuitry 
▪ Each core has 256 integrated CCO-based ADCs and 32 current DACs for programming 
▪ Each unit cell comprises four phase-change memory devices (Total: 16M PCM devices)
▪ On-chip local and global digital processing as well as a communication fabric
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IBM Hermes Project Chip: architectural overview
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Performance

• Highest CIFAR-10 accuracy

• >15x higher MVM throughput per area than SoA resistive-memory chips 

• MVM TOPS/W somewhat lower due to large number of ADCs and LDPUs (>75% of power)

Manuel Le Gallo, IBM Research - Europe

Kwa et al., 
ISSCC 
(2022)

Wan et al., 
Nature (2022)

Hung et al., Nature 
Electr. (2021)
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▪ High compute density (dense integration)
▪ Higher compute precision
▪ Ultra-high on-chip weight capacity

▪ More efficient data converters
▪ Lower the integration time

▪ A heterogeneous compute architecture
▪ Efficient communication fabric for activations

▪ Improved yet light-weight hardware-aware training 
libraries

▪ Software stack for fully weight-stationary architectures

▪ Neural architecture search for DNN inference
▪ Applications beyond DNN inference that can leverage 

AIMC chips

Memory technology

AIMC Core

System-level 
architecture

Software stack 
including training 

libraries

APPLICATIONSAPPLICATIONS
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Towards next gen AIMC chips



Overview

o Analog crossbar simulator that 
focuses on the algorithmic level and 
algorithmic advances of Analog AI

o Analog AI training and inference 
simulations

o Bring your own models and datasets 
to evaluate the impact of emerging 
analog AI hardware on your DL 
workloads using the flexibility of 
PyTorch

Software: IBM Analog AI 
Hardware Acceleration Kit

Roadmap

Additional neural network layers

Algorithmic advances to improve 
training and inference accuracy

Premium hardware demonstrations

Real hardware demonstrations

Analog materials device builder

https://aihw-composer.draco.res.ibm.com/

Capabilities:

• Simulate analog neural network operation including forward/backward 
pass and update

• Abstract functional models of material characteristics with adjustable 
parameters

• Hardware-aware training for inference capability

• Inference simulator with drift and statistical (programming) noise models 
calibrated on hardware

• Full GPU support and substantial online documentation

Manuel Le Gallo, IBM Research - Europe

M. Rasch et al., AICAS, 2021

Le Gallo et al., APL Machine 
Learning, 2023



Applications: Inherent adversarial robustness of AIMC

▪ Experimental proof that networks implemented on AIMC hardware are inherently more robust to 
adversarial attacks than when implemented on digital hardware

▪ Experimentally validated on the IBM HERMES project chip

▪ The cause of this additional robustness is the intrinsic noise of the AIMC devices

Lammie et al., Nature Comm. (2025)
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Promising Application Domains
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Embedded neural processing units Stand-alone accelerators

Boybat et al., “Heterogeneous Embedded Neural 
Processing Units Utilizing PCM-based Analog In-
Memory Computing”, IEDM (2024)

Manuel Le Gallo, IBM Research - Europe

Büchel et al., “Efficient Scaling of Large Language 
Models with Mixture of Experts and 3D Analog In-
Memory Computing”, Nature CS (2025)



An AIMC-based NPU Architecture
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▪ Multiple AIMC and Digital accelerator nodes interconnected by a communication fabric
▪ Different flavors of custom and programmable digital accelerator nodes

▪ The NPU configuration is estimated to have ~30 mm² area and ~1W average power dissipation on ST's 28nm 
FD-SOI technology at 500MHz

Boybat et al., IEDM (2024)



NPU Architecture: Performance
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▪ Supports a wide range of Neural Network (NN) models, including CNNs, LSTMs, and even Transformers
▪ The NPU configuration is estimated to deliver competitive inference throughput approaching the performance 

of high-end SoCs for mobile devices

Boybat et al., IEDM (2024)



Stand-alone Accelerators Based on 3D AIMC

18Manuel Le Gallo, IBM Research - Europe

Buechel et al., Nature Computational 
Science (2025)

Shim et al., Proc. MEMSYS (2020)

Bavandpour et al., Neuromorphic 
Computing and Engineering (2021)

▪ Dramatic improvements in storage density for 3D non-volatile memory

▪ 3D non-volatile memory will be a game-changer for AIMC

▪ Would facilitate full-weight stationarity even for very large networks



Mixture of Experts (MoEs) with 3D AIMC

▪ MoEs replace each feedforward network in a Transformer with multiple expert networks

▪ Faster inference than dense networks with less parameters and higher accuracy

▪ Each expert can be implemented on a tier of a 3D AIMC tile -> Ideal fit for 3D AIMC!

19
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3D AIMC tiles

Mixture of Experts (MoE)

Buechel et al., Nature Computational Science (2025)



Mixture of Experts with 3D AIMC: Performance

▪ Estimates from simulations show that throughput-per-area of 3D AIMC is up to 20x higher than A100 
GPU, and energy efficiency is up to 1000x higher than A100 GPU

20
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Buechel et al., Nature Computational Science (2025)

Throughput-per-area Throughput-per-watt



Summary

▪ In-memory computing is arguably the next key breakthrough towards further 
improving the computational efficiency of deep neural networks 

• Brain-inspired: Stationary synapses and analog processing

• Arguably the only way to run LLMs on a thumb-drive sized system 

▪ Advanced research prototype chips in 14nm CMOS technology with embedded PCM

• Demonstrate the feasibility of achieving software-equivalent accuracies

• Seamless interface of analog computing with digital processing units

▪ Software/applications advancements

• AIHWKIT software library can be used to benchmark the accuracy of large networks on AIMC, 
now supporting LLMs

▪ Two promising application domains

• Embedded neural processing units based on AIMC

• Stand-alone AIMC accelerators with enormous weight capacity

21Manuel Le Gallo, IBM Research - Europe
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▪ In-memory computing group, IBM Research – Zurich, 
▪ IBM Research – Almaden, CA, USA 
▪ IBM Research – Albany, NY, USA 
▪ IBM Research – Tokyo, Kawasaki, Japan 
▪ IBM TJ Watson Research Center, NY, USA 
▪ ETH Zürich, EPFL, Patras, KCL, Oxford, WWU Münster, 

Groningen etc.

Manuel Le Gallo, IBM Research - Europe

Contributors



Backup
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▪ Differential configuration to facilitate storage of bipolar weights
▪ Synaptic weights stored in terms of analog conductance values of one or two devices per polarity
▪ Iterative programming algorithms used to achieve a target conductance value

Manuel Le Gallo, IBM Research - Europe

Programming to a target conductance value

Iterative 
programming 

algorithm

+

-

Target conductance

Measured 
conductance

Programming 
pulse



Single-core measurement

▪ 256-dimensional input vectors of 8-bit resolution
▪ Fully stationary synaptic weights stored in terms of analog conductance values
▪ 256-dimensional output vectors of 8-bit resolution
▪ Each MVM operation takes either 128ns (~1 TOPS) or 512ns (~0.25 TOPS)
▪ Achieved precision between 3 and 4 bits compared with 8-bit input/output and N-bit weight 

digital computation
Manuel Le Gallo, IBM Research - Europe

Matrix-vector multiplication
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Phase-change memory
Commonly used phase change materials

Wuttig & Yamada, Nature Materials, 2007
Le Gallo et al., J. Phys. D, 2020

▪ A nanometric volume of phase change material 
between two electrodes

▪ “WRITE” Process 
✓ By applying a voltage pulse the material can be 

changed from crystalline phase (SET) to 
amorphous phase (RESET) 

▪ “READ” process
✓ Low-field electrical resistance

SET

RESET

26Manuel Le Gallo, IBM Research - Europe



Neural network Hermes implementation
• Resnet-9 CNN with 1’866’536 weights 

for CIFAR-10 image classification (40 
cores)

• All convolutional layers implemented 
with fully on-chip analog/digital 
computations

• Software accuracy: 93.67%

• On-Chip accuracy: 92.81%

CIFAR-10 image classification

Manuel Le Gallo, IBM Research - Europe 27



Image caption generation

• LSTM network with 4,080,384 weights used 
to generate image captions (64 cores)

• LSTM and dense layer computations on-chip

• Off-chip embedding layers and caption buffer

Impl. BLEU-1 BLEU-2 BLEU-3 BLEU-4

Software 0.534 0.340 0.206 0.135

Hermes 0.544 0.346 0.206 0.134

Hermes implementation
Image 

embedding 
layer

t = 0

LSTM 
Network

Next word

Caption buffer

Word 
embedding

t > 0

t=0:         Network IN: {Image embedding}       Network OUT: “the”                Partial caption: “the”

t=1:         Network IN: “the”                    Network OUT: “white”             Partial caption: “the white”

t=2:         Network IN: “white”                    Network OUT: “cat”                 Partial caption: “the white cat”

…

Neural network

BLEU metric matches the n-grams of the produced caption with 

reference ones. Number between 0 and 1 (higher is better).

Input gate

504x2016

Hidden gate

504x2016

Dense layer

504x4064
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Interactive No-code Cloud 
Experience

o Cloud-based simulations

o Pre-configured analog device 
presets

o Show-case new algorithmic 
advancements

o Seamless interaction with 
GitHub open-source AIHWKIT

Templates for inference 
and training experiments 

Roadmap

Analog hardware access

Backend-integration with AiMOS

More neural network templates

BYO Model and datasets

Analog materials device builder

Performance models

Compose your neural 
network and select various 
analog and neural network 
parameters

Select from a wide range of 
pre-configured device presets

Analog-friendly 
optimizers

Configure various noise models for 
inference simulation 

Visualize 
accuracy 
results

Manuel Le Gallo, IBM Research - Europe

IBM Analog 
AI Hardware
Composer

https://aihw-composer.draco.res.ibm.com/



First of a Kind Analog Chip AccessIBM Analog Cloud 
Composer

Released in January 2024

Interactive Cloud Composer

No code experience. Explore training with 
analog and neural networks

https://aihw-composer.draco.res.ibm.com

A brand-new Interactive Experience for Inference on Real Analog AI Hardware 

Live Demo

Manuel Le Gallo, IBM Research - Europe
30

Free 
access to 
1T1R chip 

with 1M 
PCM cells

https://aihw-composer.draco.res.ibm.com/


▪ A custom “additive noise training” procedure required to deal with the lower-precision MVM 
operations

▪ The key idea is to inject noise to the synaptic weights in proportion to the synaptic weight noise 
during the forward pass of training

▪ Many larger-scale deep neural networks can be successfully retrained to show iso-accuracy with 
the floating-point implementation

Joshi et al., Nature Comm. (2020); Rasch et al., Nature Comm. (2023)

Manuel Le Gallo, IBM Research - Europe 31

Software: Custom training for DNN inference



Software: AIHWKIT-Lightning 

▪ New lightweight library as a faster alternative to AIHWKIT 
with less features: https://github.com/IBM/aihwkit-
lightning

▪ Aimed for training very large networks (e.g. LLMs)

▪ Can train Phi-3-Mini (3.8B parameters) on 1B tokens in 
under 6 hours using 96 V100 GPUs. 24h on 8 A100 GPUs. 

32
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Buechel et al., NeurIPS MLNCP (2024)

~1.4x faster than AIHWKIT, ~2x faster than NeuroSIM

https://github.com/IBM/aihwkit-lightning
https://github.com/IBM/aihwkit-lightning


AIMC Accelerator Node

Manuel Le Gallo, IBM Research - Europe 33

   

   

   

                                           

                                          

                                        

      

 

 

 

       

         

▪ 512x512 array per AIMC node

▪ Potential for 8 different weight sets at lowest precision (>2M weights)

▪ Multiple PCM devices can be combined for higher compute precision
▪ Current-controlled oscillator-based ADCs

Boybat et al., IEDM (2024)



Mixture of Experts with 3D AIMC: Accuracy

▪ With hardware-aware training, we can get acceptable accuracies (within 99% of SW baseline) with an 
MoE for language modeling on WikiText-103 at noise levels comparable to Hermes chip

34
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Buechel et al., Nature Computational Science (2025)

Noise level of 
Hermes chip

Noise standard deviation
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